These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24035798)

  • 21. Anaerobic treatment of army ammunition production wastewater containing perchlorate and RDX.
    Atikovic E; Suidan MT; Maloney SW
    Chemosphere; 2008 Aug; 72(11):1643-8. PubMed ID: 18586300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental impacts of training activities at an air weapons range.
    Bordeleau G; Martel R; Ampleman G; Thiboutot S
    J Environ Qual; 2008; 37(2):308-17. PubMed ID: 18268292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-dinitroanisole (DNAN).
    Dodard SG; Sarrazin M; Hawari J; Paquet L; Ampleman G; Thiboutot S; Sunahara GI
    J Hazard Mater; 2013 Nov; 262():143-50. PubMed ID: 24021166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the effect of insensitive high explosive residues on soil using an environmental quality index (EQI) approach.
    Persico F; Coulon F; Ladyman M; López CF; Temple T
    Sci Total Environ; 2023 Apr; 869():161797. PubMed ID: 36716874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. "Don't Blast": blast-in-place (BiP) operations of dumped World War munitions in the oceans significantly increase hazards to the environment and the human seafood consumer.
    Maser E; Strehse JS
    Arch Toxicol; 2020 Jun; 94(6):1941-1953. PubMed ID: 32303806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urinary perchlorate exposure and risk in women of reproductive age in a fireworks production area of China.
    Li Q; Yu YJ; Wang FF; Chen SW; Yin Y; Lin HP; Che F; Sun P; Qin J; Liu J; Wang HM
    Arch Environ Contam Toxicol; 2014 Jul; 67(1):42-9. PubMed ID: 24859046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.
    Jaramillo AM; Douglas TA; Walsh ME; Trainor TP
    Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicokinetic Model Development for the Insensitive Munitions Component 2,4-Dinitroanisole.
    Sweeney LM; Goodwin MR; Hulgan AD; Gut CP; Bannon DI
    Int J Toxicol; 2015; 34(5):417-32. PubMed ID: 26173616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiency of perchlorate consumption in road flares, propellants and explosives.
    Oxley JC; Smith JL; Higgins C; Bowden P; Moran J; Brady J; Aziz CE; Cox E
    J Environ Manage; 2009 Aug; 90(11):3629-34. PubMed ID: 19643526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissolution of three insensitive munitions formulations.
    Taylor S; Park E; Bullion K; Dontsova K
    Chemosphere; 2015 Jan; 119():342-348. PubMed ID: 25043961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissolution, sorption, and phytoremediation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine.
    Richard T; Weidhaas J
    J Hazard Mater; 2014 Sep; 280():561-9. PubMed ID: 25212590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying the transport of energetic materials in unsaturated sediments from cracked unexploded ordnance.
    Lewis J; Martel R; Trépanier L; Ampleman G; Thiboutot S
    J Environ Qual; 2009; 38(6):2229-36. PubMed ID: 19875778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of insensitive munitions constituents, NTO, DNAN, RDX, and HMX in runoff and sediment under simulated rainfall.
    Polyakov V; Kadoya W; Beal S; Morehead H; Hunt E; Cubello F; Meding SM; Dontsova K
    Sci Total Environ; 2023 Mar; 866():161434. PubMed ID: 36623648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving post-detonation energetics residues estimations for the Life Cycle Environmental Assessment process for munitions.
    Walsh M; Gullett B; Walsh M; Bigl M; Aurell J
    Chemosphere; 2018 Mar; 194():622-627. PubMed ID: 29241137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A laboratory rill study of IMX-104 transport in overland flow.
    Karls B; Meding SM; Li L; Polyakov V; Kadoya W; Beal S; Dontsova K
    Chemosphere; 2023 Jan; 310():136866. PubMed ID: 36270523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine.
    Richard T; Weidhaas J
    J Hazard Mater; 2014 Sep; 280():372-9. PubMed ID: 25181681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphological Variations of Explosive Residue Particles and Implications for Understanding Detonation Mechanisms.
    Abdul-Karim N; Blackman CS; Gill PP; Morgan RM; Matjacic L; Webb R; Ng WH
    Anal Chem; 2016 Apr; 88(7):3899-908. PubMed ID: 26938055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Passive in situ biobarrier for treatment of comingled nitramine explosives and perchlorate in groundwater on an active range.
    Fuller ME; Hedman PC; Lippincott DR; Hatzinger PB
    J Hazard Mater; 2019 Mar; 365():827-834. PubMed ID: 30481733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast separation and quantification method for nitroguanidine and 2,4-dinitroanisole by ultrafast liquid chromatography-tandem mass spectrometry.
    Mu R; Shi H; Yuan Y; Karnjanapiboonwong A; Burken JG; Ma Y
    Anal Chem; 2012 Apr; 84(7):3427-32. PubMed ID: 22414071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Occurrence of Perchlorate in Various Water Sources in South India.
    Balakrishnan D; Rajesh MP; Venkataraman P; Purushoth E; Darshan BS; Chandraprabha N
    J Environ Sci Eng; 2014 Apr; 56(2):147-52. PubMed ID: 26563060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.