These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 24035819)

  • 21. Enhancement of speech-in-noise comprehension through vibrotactile stimulation at the syllabic rate.
    Guilleminot P; Reichenbach T
    Proc Natl Acad Sci U S A; 2022 Mar; 119(13):e2117000119. PubMed ID: 35312362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.
    Berezutskaya J; Freudenburg ZV; Güçlü U; van Gerven MAJ; Ramsey NF
    J Neurosci; 2017 Aug; 37(33):7906-7920. PubMed ID: 28716965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds.
    Miettinen I; Tiitinen H; Alku P; May PJ
    BMC Neurosci; 2010 Feb; 11():24. PubMed ID: 20175890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auditory sustained field responses to periodic noise.
    Keceli S; Inui K; Okamoto H; Otsuru N; Kakigi R
    BMC Neurosci; 2012 Jan; 13():7. PubMed ID: 22221469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human cortical organization for processing vocalizations indicates representation of harmonic structure as a signal attribute.
    Lewis JW; Talkington WJ; Walker NA; Spirou GA; Jajosky A; Frum C; Brefczynski-Lewis JA
    J Neurosci; 2009 Feb; 29(7):2283-96. PubMed ID: 19228981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pitch coding and pitch processing in the human brain.
    Plack CJ; Barker D; Hall DA
    Hear Res; 2014 Jan; 307():53-64. PubMed ID: 23938209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex.
    Hart HC; Palmer AR; Hall DA
    Cereb Cortex; 2003 Jul; 13(7):773-81. PubMed ID: 12816893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of creaky voice in Cantonese tonal perception.
    Yu KM; Lam HW
    J Acoust Soc Am; 2014 Sep; 136(3):1320. PubMed ID: 25190405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homology and Specificity of Natural Sound-Encoding in Human and Monkey Auditory Cortex.
    Erb J; Armendariz M; De Martino F; Goebel R; Vanduffel W; Formisano E
    Cereb Cortex; 2019 Aug; 29(9):3636-3650. PubMed ID: 30395192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural representations of complex temporal modulations in the human auditory cortex.
    Ding N; Simon JZ
    J Neurophysiol; 2009 Nov; 102(5):2731-43. PubMed ID: 19692508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Soundmorphing": a new approach to studying speech perception in humans.
    Specht K; Rimol LM; Reul J; Hugdahl K
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):60-5. PubMed ID: 15908119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech.
    Başkent D; Chatterjee M
    Hear Res; 2010 Dec; 270(1-2):127-33. PubMed ID: 20817081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human cortical dynamics determined by speech fundamental frequency.
    Mäkelä AM; Alku P; Mäkinen V; Valtonen J; May P; Tiitinen H
    Neuroimage; 2002 Nov; 17(3):1300-5. PubMed ID: 12414269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial representations of temporal and spectral sound cues in human auditory cortex.
    Herdener M; Esposito F; Scheffler K; Schneider P; Logothetis NK; Uludag K; Kayser C
    Cortex; 2013; 49(10):2822-33. PubMed ID: 23706955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal basis of speech comprehension.
    Specht K
    Hear Res; 2014 Jan; 307():121-35. PubMed ID: 24113115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences.
    Eggermont JJ
    J Neurophysiol; 1998 Nov; 80(5):2743-64. PubMed ID: 9819278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of 1st- and 2nd-order temporal-envelope cues in a patient with left superior cortical damage.
    Füllgrabe C; Maillet D; Moroni C; Belin C; Lorenzi C
    Neurocase; 2004 Jun; 10(3):189-97. PubMed ID: 15788256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voice segregation by difference in fundamental frequency: effect of masker type.
    Deroche ML; Culling JF
    J Acoust Soc Am; 2013 Nov; 134(5):EL465-70. PubMed ID: 24181992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: an EEG study.
    Kühnis J; Elmer S; Meyer M; Jäncke L
    Neuropsychologia; 2013 Jul; 51(8):1608-18. PubMed ID: 23664833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporal integration of vowel periodicity in the auditory cortex.
    Yrttiaho S; Tiitinen H; Alku P; Miettinen I; May PJ
    J Acoust Soc Am; 2010 Jul; 128(1):224-34. PubMed ID: 20649218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.