BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24035851)

  • 1. Label free sensing platform for amyloid fibrils effect on living cells.
    Gheorghiu M; David S; Polonschii C; Olaru A; Gaspar S; Bajenaru O; Popescu BO; Gheorghiu E
    Biosens Bioelectron; 2014 Feb; 52():89-97. PubMed ID: 24035851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free monitoring of cell-based assays: combining impedance analysis with SPR for multiparametric cell profiling.
    Michaelis S; Wegener J; Robelek R
    Biosens Bioelectron; 2013 Nov; 49():63-70. PubMed ID: 23711901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy.
    Robelek R; Wegener J
    Biosens Bioelectron; 2010 Jan; 25(5):1221-4. PubMed ID: 19818594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical impedance spectroscopic measurements of FCCP-induced change in membrane permeability of MDCK cells.
    Zhao L; Li X; Lin Y; Yang L; Yu P; Mao L
    Analyst; 2012 May; 137(9):2199-204. PubMed ID: 22434126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy.
    Chabot V; Miron Y; Charette PG; Grandbois M
    Biosens Bioelectron; 2013 Dec; 50():125-31. PubMed ID: 23845690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS.
    Polonschii C; David S; Gáspár S; Gheorghiu M; Rosu-Hamzescu M; Gheorghiu E
    Anal Chem; 2014 Sep; 86(17):8553-62. PubMed ID: 25126676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing.
    Ng SP; Wu CM; Wu SY; Ho HP; Kong SK
    Biosens Bioelectron; 2010 Dec; 26(4):1593-8. PubMed ID: 20800466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of amyloid fibrillation by electrical impedance spectroscopy.
    da Silva RR; de Lima SV; de Oliveira HP; de Melo CP; Frías IAM; Oliveira MDL; Andrade CAS
    Colloids Surf B Biointerfaces; 2017 Dec; 160():724-731. PubMed ID: 29035820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological sensing using transmission surface plasmon resonance spectroscopy.
    Lahav M; Vaskevich A; Rubinstein I
    Langmuir; 2004 Aug; 20(18):7365-7. PubMed ID: 15323475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined surface plasmon resonance and impedance spectroscopy systems for biosensing.
    Patskovsky S; Latendresse V; Dallaire AM; Doré-Mathieu L; Meunier M
    Analyst; 2014 Feb; 139(3):596-602. PubMed ID: 24317183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a protease sensor for caspase-3 activity detection based on surface plasmon resonance.
    Chen H; Mei Q; Hou Y; Zhu X; Koh K; Li X; Li G
    Analyst; 2013 Oct; 138(19):5757-61. PubMed ID: 23907211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding.
    Lu J; Wang W; Wang S; Shan X; Li J; Tao N
    Anal Chem; 2012 Jan; 84(1):327-33. PubMed ID: 22122514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosensing based on surface plasmon resonance and living cells.
    Chabot V; Cuerrier CM; Escher E; Aimez V; Grandbois M; Charette PG
    Biosens Bioelectron; 2009 Feb; 24(6):1667-73. PubMed ID: 18845432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy.
    Yashunsky V; Lirtsman V; Golosovsky M; Davidov D; Aroeti B
    Biophys J; 2010 Dec; 99(12):4028-36. PubMed ID: 21156146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes.
    Yang H; Li Z; Wei X; Huang R; Qi H; Gao Q; Li C; Zhang C
    Talanta; 2013 Jul; 111():62-8. PubMed ID: 23622526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From cellular cultures to cellular spheroids: is impedance spectroscopy a viable tool for monitoring multicellular spheroid (MCS) drug models?
    Alexander FA; Price DT; Bhansali S
    IEEE Rev Biomed Eng; 2013; 6():63-76. PubMed ID: 23335673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons.
    Vala M; Robelek R; Bocková M; Wegener J; Homola J
    Biosens Bioelectron; 2013 Feb; 40(1):417-21. PubMed ID: 22863117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid analysis of matrix metalloproteinase-3 activity by gelatin arrays using a spectral surface plasmon resonance biosensor.
    Jung SH; Kong DH; Park JH; Lee ST; Hyun J; Kim YM; Ha KS
    Analyst; 2010 May; 135(5):1050-7. PubMed ID: 20419256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.