These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24035861)

  • 1. Bayesian process-identification in bacteria transport in porous media.
    Massoudieh A; Lu N; Liang X; Nguyen TH; Ginn TR
    J Contam Hydrol; 2013 Oct; 153():78-91. PubMed ID: 24035861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the co-transport of viruses and colloids in unsaturated porous media.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S
    J Contam Hydrol; 2015 Oct; 181():82-101. PubMed ID: 25681069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review.
    Babakhani P; Bridge J; Doong RA; Phenrat T
    Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring and modelling straining of Escherichia coli in saturated porous media.
    Foppen JW; van Herwerden M; Schijven J
    J Contam Hydrol; 2007 Aug; 93(1-4):236-54. PubMed ID: 17466406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the effects of water velocity on TiO2 nanoparticles transport in saturated porous media.
    Toloni I; Lehmann F; Ackerer P
    J Contam Hydrol; 2014 Dec; 171():42-8. PubMed ID: 25461886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloid transport in porous media: impact of hyper-saline solutions.
    Magal E; Weisbrod N; Yechieli Y; Walker SL; Yakirevich A
    Water Res; 2011 May; 45(11):3521-32. PubMed ID: 21550095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An explanation for differences in the process of colloid adsorption in batch and column studies.
    Treumann S; Torkzaban S; Bradford SA; Visalakshan RM; Page D
    J Contam Hydrol; 2014 Aug; 164():219-29. PubMed ID: 24997430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian inversion of laboratory experiments of transport through limestone fractures.
    Lehmann F; Rajabi MM; Belfort B; Delay F; Fahs M; Ackerer P; Younes A
    J Contam Hydrol; 2022 Aug; 249():104045. PubMed ID: 35759890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deposition and transport of Pseudomonas aeruginosa in porous media: lab-scale experiments and model analysis.
    Kwon KS; Kim SB; Choi NC; Kim DJ; Lee S; Lee SH; Choi JW
    Environ Technol; 2013; 34(17-20):2757-64. PubMed ID: 24527639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Idling time of motile bacteria contributes to retardation and dispersion in sand porous medium.
    Liu J; Ford RM; Smith JA
    Environ Sci Technol; 2011 May; 45(9):3945-51. PubMed ID: 21456575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of Iron Oxide Colloids in Packed Quartz Sand Media: Monolayer and Multilayer Deposition.
    Kuhnen F; Barmettler K; Bhattacharjee S; Elimelech M; Kretzschmar R
    J Colloid Interface Sci; 2000 Nov; 231(1):32-41. PubMed ID: 11082245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of diffusion-limited retardation of contaminants in hydraulically and lithologically nonuniform media.
    Liedl R; Ptak T
    J Contam Hydrol; 2003 Nov; 66(3-4):239-59. PubMed ID: 14568401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carbon nanotubes on the transport and retention of bacteria in saturated porous media.
    Yang H; Tong M; Kim H
    Environ Sci Technol; 2013 Oct; 47(20):11537-44. PubMed ID: 24040844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of Escherichia coli bacteria through laboratory columns of glacial-outwash sediments: estimating model parameter values based on sediment characteristics.
    Levy J; Sun K; Findlay RH; Farruggia FT; Porter J; Mumy KL; Tomaras J; Tomaras A
    J Contam Hydrol; 2007 Jan; 89(1-2):71-106. PubMed ID: 17095116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media.
    Seifert D; Engesgaard P
    J Contam Hydrol; 2007 Aug; 93(1-4):58-71. PubMed ID: 17336422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and deposition of CeO2 nanoparticles in water-saturated porous media.
    Li Z; Sahle-Demessie E; Hassan AA; Sorial GA
    Water Res; 2011 Oct; 45(15):4409-18. PubMed ID: 21708395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
    Flury M; Czigány S; Chen G; Harsh JB
    J Contam Hydrol; 2004 Jul; 71(1-4):111-26. PubMed ID: 15145564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.