BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24036047)

  • 1. Calorimetric studies of the interactions of linker histone H1(0) and its carboxyl (H1(0)-C) and globular (H1(0)-G) domains with calf-thymus DNA.
    Machha VR; Waddle JR; Turner AL; Wellman S; Le VH; Lewis EA
    Biophys Chem; 2013 Dec; 184():22-8. PubMed ID: 24036047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the energetics of histone H1.1 and H1.4 duplex DNA interactions.
    Machha VR; Jones SB; Waddle JR; Le VH; Wellman S; Lewis EA
    Biophys Chem; 2014 Jan; 185():32-8. PubMed ID: 24317196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and osmotic stress dependence of the thermodynamics for binding linker histone H1
    Machha VR; Mikek CG; Wellman S; Lewis EA
    Biochem Biophys Rep; 2017 Dec; 12():158-165. PubMed ID: 29090277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding and thermodynamics of REV peptide-ctDNA interaction.
    Upadhyay SK
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding nucleosomal histone and DNA interactions: a biophysical study.
    Saha C; Kumar R; Das A
    J Biomol Struct Dyn; 2017 Sep; 35(12):2531-2538. PubMed ID: 27533914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcalorimetric and spectrographic studies on the interaction of DNA with betaxolol.
    Sun D; Xu X; Liu M; Sun X; Zhang J; Li L; Di Y
    Int J Pharm; 2010 Feb; 386(1-2):165-71. PubMed ID: 19931607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of H1 in chromatin folding. A thermodynamic study of chromatin reconstitution by differential scanning calorimetry.
    Russo I; Barboro P; Alberti I; Parodi S; Balbi C; Allera C; Lazzarini G; Patrone E
    Biochemistry; 1995 Jan; 34(1):301-11. PubMed ID: 7819211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.
    Ozdemir A; Gursaclı RT; Tekinay T
    Biol Trace Elem Res; 2014 May; 158(2):268-74. PubMed ID: 24652629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designer Histone Complexes: Controlling Protein-DNA Interactions with Protein Charge as an "All-or-None" Digital Switch.
    Baveghems CL; Pattammattel A; Kumar CV
    J Phys Chem B; 2016 Nov; 120(46):11880-11887. PubMed ID: 27792341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic investigations of [(phen)2Ru(tatpp)Ru(phen)2](4+) interactions with B-DNA.
    Le VH; McGuire MR; Ahuja P; MacDonnell FM; Lewis EA
    J Phys Chem B; 2015 Jan; 119(1):65-71. PubMed ID: 25437923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An isothermal titration and differential scanning calorimetry study of the G-quadruplex DNA-insulin interaction.
    Timmer CM; Michmerhuizen NL; Witte AB; Van Winkle M; Zhou D; Sinniah K
    J Phys Chem B; 2014 Feb; 118(7):1784-90. PubMed ID: 24459986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The structure of the complexes of DNA with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions. I. Circular dicroism spectroscopy].
    Chikhirzhina EV; Polianichko AM; Kostyleva EI; Vorob'ev VI
    Mol Biol (Mosk); 2011; 45(2):356-65. PubMed ID: 21634123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt bridge exchange binding mechanism between streptavidin and its DNA aptamer--thermodynamics and spectroscopic evidences.
    Kuo TC; Lee PC; Tsai CW; Chen WY
    J Mol Recognit; 2013 Mar; 26(3):149-59. PubMed ID: 23345105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and DNA-binding studies of ruthenium complexes [Ru(tpy)(ptn)]2+ and Ru(dmtpy)(ptn)]2+.
    Li LY; Jia HN; Yu HJ; Du KJ; Lin QT; Qiu KQ; Chao H; Ji LN
    J Inorg Biochem; 2012 Aug; 113():31-9. PubMed ID: 22687492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Hoechst 33258 and ethidium with histone1-DNA condensates.
    Sarkar R; Pal SK
    Biomacromolecules; 2007 Nov; 8(11):3332-9. PubMed ID: 17902690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1.
    Khadake JR; Rao MR
    Biochemistry; 1997 Feb; 36(5):1041-51. PubMed ID: 9033394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of netropsin to several DNA constructs: evidence for at least two different 1:1 complexes formed from an -AATT-containing ds-DNA construct and a single minor groove binding ligand.
    Freyer MW; Buscaglia R; Cashman D; Hyslop S; Wilson WD; Chaires JB; Lewis EA
    Biophys Chem; 2007 Mar; 126(1-3):186-96. PubMed ID: 16837123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: binary and ternary approaches.
    Shakibapour N; Dehghani Sani F; Beigoli S; Sadeghian H; Chamani J
    J Biomol Struct Dyn; 2019 Feb; 37(2):359-371. PubMed ID: 29338579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-induced secondary structure of the carboxyl-terminal domain of histone H1.
    Roque A; Iloro I; Ponte I; Arrondo JL; Suau P
    J Biol Chem; 2005 Sep; 280(37):32141-7. PubMed ID: 16006555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetic studies on DNA-peptide interaction in relation to the enthalpy-entropy compensation paradox.
    Yang RC; Huang JT; Chien SC; Huang R; Jeng KC; Chen YC; Liao M; Wu JR; Hung WK; Hung CC; Chen YL; Waring MJ; Sheh L
    Org Biomol Chem; 2013 Jan; 11(1):48-61. PubMed ID: 23051861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.