BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24036119)

  • 21. Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding.
    Karpowich NK; Huang HH; Smith PC; Hunt JF
    J Biol Chem; 2003 Mar; 278(10):8429-34. PubMed ID: 12468528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Opening and closing motions in the periplasmic vitamin B12 binding protein BtuF.
    Kandt C; Xu Z; Tieleman DP
    Biochemistry; 2006 Nov; 45(44):13284-92. PubMed ID: 17073449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The arginine regulon of Escherichia coli: whole-system transcriptome analysis discovers new genes and provides an integrated view of arginine regulation.
    Caldara M; Charlier D; Cunin R
    Microbiology (Reading); 2006 Nov; 152(Pt 11):3343-3354. PubMed ID: 17074904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB.
    Chu BC; Otten R; Krewulak KD; Mulder FA; Vogel HJ
    J Biol Chem; 2014 Oct; 289(42):29219-34. PubMed ID: 25173704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of the major periplasmic domain of the bacterial membrane protein assembly facilitator YidC.
    Oliver DC; Paetzel M
    J Biol Chem; 2008 Feb; 283(8):5208-16. PubMed ID: 18093969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trapping open and closed forms of FitE: a group III periplasmic binding protein.
    Shi R; Proteau A; Wagner J; Cui Q; Purisima EO; Matte A; Cygler M
    Proteins; 2009 May; 75(3):598-609. PubMed ID: 19004000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salmonella typhimurium histidine periplasmic permease mutations that allow transport in the absence of histidine-binding proteins.
    Speiser DM; Ames GF
    J Bacteriol; 1991 Feb; 173(4):1444-51. PubMed ID: 1995591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Backbone resonance assignments for the periplasmic chaperone LolA from Escherichia coli.
    Nakada S; Takahashi H; Sakakura M; Kurono M; Shimada I
    Biomol NMR Assign; 2007 Jul; 1(1):125-7. PubMed ID: 19636845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of a region of the HisJ binding protein involved in the recognition of the membrane complex of the histidine transport system of Salmonella typhimurium.
    Prossnitz E
    J Biol Chem; 1991 May; 266(15):9673-7. PubMed ID: 2033059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure dictates the mechanism of ligand recognition in the histidine and maltose binding proteins.
    Jayanthi LP; Mascarenhas NM; Gosavi S
    Curr Res Struct Biol; 2020; 2():180-190. PubMed ID: 34235478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Both lobes of the soluble receptor of the periplasmic histidine permease, an ABC transporter (traffic ATPase), interact with the membrane-bound complex. Effect of different ligands and consequences for the mechanism of action.
    Liu CE; Liu PQ; Wolf A; Lin E; Ames GF
    J Biol Chem; 1999 Jan; 274(2):739-47. PubMed ID: 9873010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc- and iron-dependent cytosolic metallo-beta-lactamase domain proteins exhibit similar zinc-binding affinities, independent of an atypical glutamate at the metal-binding site.
    Schilling O; Vogel A; Kostelecky B; Natal da Luz H; Spemann D; Späth B; Marchfelder A; Tröger W; Meyer-Klaucke W
    Biochem J; 2005 Jan; 385(Pt 1):145-53. PubMed ID: 15324305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational redesign of the Escherichia coli ribose-binding protein ligand binding pocket for 1,3-cyclohexanediol and cyclohexanol.
    Tavares D; Reimer A; Roy S; Joublin A; Sentchilo V; van der Meer JR
    Sci Rep; 2019 Nov; 9(1):16940. PubMed ID: 31729460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional and structural characterization of EnvZ, an osmosensing histidine kinase of E. coli.
    Yoshida T; Phadtare S; Inouye M
    Methods Enzymol; 2007; 423():184-202. PubMed ID: 17609132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus.
    Schiefner A; Holtmann G; Diederichs K; Welte W; Bremer E
    J Biol Chem; 2004 Nov; 279(46):48270-81. PubMed ID: 15308642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural investigation of the interaction between LolA and LolB using NMR.
    Nakada S; Sakakura M; Takahashi H; Okuda S; Tokuda H; Shimada I
    J Biol Chem; 2009 Sep; 284(36):24634-43. PubMed ID: 19546215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases.
    Ames GF; Liu CE; Joshi AK; Nikaido K
    J Biol Chem; 1996 Jun; 271(24):14264-70. PubMed ID: 8662800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins.
    Garcia-Herrero A; Peacock RS; Howard SP; Vogel HJ
    Mol Microbiol; 2007 Nov; 66(4):872-89. PubMed ID: 17927700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An unconventional ligand-binding mechanism of substrate-binding proteins: MD simulation and Markov state model analysis of BtuF.
    Wang D; Weng J; Wang W
    J Comput Chem; 2019 May; 40(14):1440-1448. PubMed ID: 30747434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.