These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 24036186)
1. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments. Cai K; Su T; Lin S; Zheng R Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():548-56. PubMed ID: 24036186 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides. Cai K; Han C; Wang J Phys Chem Chem Phys; 2009 Oct; 11(40):9149-59. PubMed ID: 19812835 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations. Cai K; Zheng X; Du F Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():150-157. PubMed ID: 28448953 [TBL] [Abstract][Full Text] [Related]
4. Simulations of the temperature dependence of amide I vibration. Kaminský J; Bouř P; Kubelka J J Phys Chem A; 2011 Jan; 115(1):30-4. PubMed ID: 21141980 [TBL] [Abstract][Full Text] [Related]
5. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes. Lee H; Lee G; Jeon J; Cho M J Phys Chem A; 2012 Jan; 116(1):347-57. PubMed ID: 22087732 [TBL] [Abstract][Full Text] [Related]
6. Solvent dependence of the N-methylacetamide structure and force field. Andrushchenko V; Matejka P; Anderson DT; Kaminský J; Hornícek J; Paulson LO; Bour P J Phys Chem A; 2009 Sep; 113(35):9727-36. PubMed ID: 19663410 [TBL] [Abstract][Full Text] [Related]
7. Amide I vibrational dynamics of N-methylacetamide in polar solvents: the role of electrostatic interactions. DeCamp MF; DeFlores L; McCracken JM; Tokmakoff A; Kwac K; Cho M J Phys Chem B; 2005 Jun; 109(21):11016-26. PubMed ID: 16852342 [TBL] [Abstract][Full Text] [Related]
8. Vibrational solvatochromism: towards systematic approach to modeling solvation phenomena. Błasiak B; Lee H; Cho M J Chem Phys; 2013 Jul; 139(4):044111. PubMed ID: 23901964 [TBL] [Abstract][Full Text] [Related]
9. Mapping the amide-I vibrations of model dipeptides with secondary structure sensitivity and amino acid residue specificity, and its application to amyloid β-peptide in aqueous solution. Cai K; Zheng X; Liu J; Du F; Yan G; Zhuang D; Yan S Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():391-400. PubMed ID: 31059891 [TBL] [Abstract][Full Text] [Related]
10. DFT-based simulations of IR amide I' spectra for a small protein in solution. Comparison of explicit and empirical solvent models. Grahnen JA; Amunson KE; Kubelka J J Phys Chem B; 2010 Oct; 114(40):13011-20. PubMed ID: 20857992 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of electrostatic models for the amide-I and -II modes: linear and two-dimensional infrared spectra. Maekawa H; Ge NH J Phys Chem B; 2010 Jan; 114(3):1434-46. PubMed ID: 20050636 [TBL] [Abstract][Full Text] [Related]
12. The anharmonic vibrational potential and relaxation pathways of the amide I and II modes of N-methylacetamide. DeFlores LP; Ganim Z; Ackley SF; Chung HS; Tokmakoff A J Phys Chem B; 2006 Sep; 110(38):18973-80. PubMed ID: 16986892 [TBL] [Abstract][Full Text] [Related]
13. A transferable electrostatic map for solvation effects on amide I vibrations and its application to linear and two-dimensional spectroscopy. la Cour Jansen T; Knoester J J Chem Phys; 2006 Jan; 124(4):044502. PubMed ID: 16460180 [TBL] [Abstract][Full Text] [Related]
14. Non-Gaussian statistics of amide I mode frequency fluctuation of N-methylacetamide in methanol solution: linear and nonlinear vibrational spectra. Kwac K; Lee H; Cho M J Chem Phys; 2004 Jan; 120(3):1477-90. PubMed ID: 15268273 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of transferable amide I vibrational frequency maps for peptides. Wang L; Middleton CT; Zanni MT; Skinner JL J Phys Chem B; 2011 Apr; 115(13):3713-24. PubMed ID: 21405034 [TBL] [Abstract][Full Text] [Related]
16. A polarizable force field for computing the infrared spectra of the polypeptide backbone. Schultheis V; Reichold R; Schropp B; Tavan P J Phys Chem B; 2008 Oct; 112(39):12217-30. PubMed ID: 18781720 [TBL] [Abstract][Full Text] [Related]
17. DFT-based simulations of amide I' IR spectra of a small protein in solution using empirical electrostatic map with a continuum solvent model. Welch WR; Kubelka J J Phys Chem B; 2012 Sep; 116(35):10739-47. PubMed ID: 22891757 [TBL] [Abstract][Full Text] [Related]
18. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics. Yang ZZ; Qian P J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic polarizable force field for amide groups in polypeptides. Schropp B; Wichmann C; Tavan P J Phys Chem B; 2010 May; 114(19):6740-50. PubMed ID: 20411916 [TBL] [Abstract][Full Text] [Related]
20. Vibrational energy relaxation of the amide I mode of N-methylacetamide in D₂O studied through Born-Oppenheimer molecular dynamics. Farag MH; Bastida A; Ruiz-López MF; Monard G; Ingrosso F J Phys Chem B; 2014 Jun; 118(23):6186-97. PubMed ID: 24836589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]