These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 24036214)
1. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Rybak AP; Tang D Cell Signal; 2013 Dec; 25(12):2734-42. PubMed ID: 24036214 [TBL] [Abstract][Full Text] [Related]
2. Propagation of human prostate cancer stem-like cells occurs through EGFR-mediated ERK activation. Rybak AP; Ingram AJ; Tang D PLoS One; 2013; 8(4):e61716. PubMed ID: 23620784 [TBL] [Abstract][Full Text] [Related]
3. Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells. Rybak AP; He L; Kapoor A; Cutz JC; Tang D Biochim Biophys Acta; 2011 May; 1813(5):683-94. PubMed ID: 21277911 [TBL] [Abstract][Full Text] [Related]
4. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response. Yan J; Tang D Exp Cell Res; 2014 Oct; 328(1):132-142. PubMed ID: 25149681 [TBL] [Abstract][Full Text] [Related]
5. The emerging role of SOX2 in cell proliferation and survival and its crosstalk with oncogenic signaling in lung cancer. Chou YT; Lee CC; Hsiao SH; Lin SE; Lin SC; Chung CH; Chung CH; Kao YR; Wang YH; Chen CT; Wei YH; Wu CW Stem Cells; 2013 Dec; 31(12):2607-19. PubMed ID: 23940081 [TBL] [Abstract][Full Text] [Related]
6. The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Hu Q; Zhang L; Wen J; Wang S; Li M; Feng R; Yang X; Li L Stem Cells; 2010 Feb; 28(2):279-86. PubMed ID: 19882665 [TBL] [Abstract][Full Text] [Related]
8. Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Gan Y; Shi C; Inge L; Hibner M; Balducci J; Huang Y Oncogene; 2010 Sep; 29(35):4947-58. PubMed ID: 20562913 [TBL] [Abstract][Full Text] [Related]
9. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Kuo HY; Hsu HT; Chen YC; Chang YW; Liu FT; Wu CW Glycobiology; 2016 Feb; 26(2):155-65. PubMed ID: 26447186 [TBL] [Abstract][Full Text] [Related]
10. Complex post-transcriptional regulation of EGF-receptor expression by EGF and TGF-alpha in human prostate cancer cells. Seth D; Shaw K; Jazayeri J; Leedman PJ Br J Cancer; 1999 May; 80(5-6):657-69. PubMed ID: 10360641 [TBL] [Abstract][Full Text] [Related]
11. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Zhao D; Pan C; Sun J; Gilbert C; Drews-Elger K; Azzam DJ; Picon-Ruiz M; Kim M; Ullmer W; El-Ashry D; Creighton CJ; Slingerland JM Oncogene; 2015 Jun; 34(24):3107-19. PubMed ID: 25151964 [TBL] [Abstract][Full Text] [Related]
12. DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling. Mamoune A; Kassis J; Kharait S; Kloeker S; Manos E; Jones DA; Wells A Exp Cell Res; 2004 Sep; 299(1):91-100. PubMed ID: 15302576 [TBL] [Abstract][Full Text] [Related]
13. Growth factor/growth factor receptor loops in autocrine growth regulation of human prostate cancer DU145 cells. Ligęza J; Ligęza J; Klein A Acta Biochim Pol; 2011; 58(3):391-6. PubMed ID: 21887406 [TBL] [Abstract][Full Text] [Related]
14. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines. Seiler D; Zheng J; Liu G; Wang S; Yamashiro J; Reiter RE; Huang J; Zeng G Prostate; 2013 Sep; 73(13):1378-90. PubMed ID: 23728788 [TBL] [Abstract][Full Text] [Related]
15. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. Jia X; Li X; Xu Y; Zhang S; Mou W; Liu Y; Liu Y; Lv D; Liu CH; Tan X; Xiang R; Li N J Mol Cell Biol; 2011 Aug; 3(4):230-8. PubMed ID: 21415100 [TBL] [Abstract][Full Text] [Related]
16. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer. Wu W; Yang Q; Fung KM; Humphreys MR; Brame LS; Cao A; Fang YT; Shih PT; Kropp BP; Lin HK Mol Cell Endocrinol; 2014 Mar; 383(1-2):69-79. PubMed ID: 24296312 [TBL] [Abstract][Full Text] [Related]
17. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells. Recchia AG; Musti AM; Lanzino M; Panno ML; Turano E; Zumpano R; Belfiore A; Andò S; Maggiolini M Int J Biochem Cell Biol; 2009 Mar; 41(3):603-14. PubMed ID: 18692155 [TBL] [Abstract][Full Text] [Related]
18. IQGAP2, A candidate tumour suppressor of prostate tumorigenesis. Xie Y; Yan J; Cutz JC; Rybak AP; He L; Wei F; Kapoor A; Schmidt VA; Tao L; Tang D Biochim Biophys Acta; 2012 Jun; 1822(6):875-84. PubMed ID: 22406297 [TBL] [Abstract][Full Text] [Related]
19. Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells. Barkeer S; Chugh S; Karmakar S; Kaushik G; Rauth S; Rachagani S; Batra SK; Ponnusamy MP BMC Cancer; 2018 Nov; 18(1):1157. PubMed ID: 30466404 [TBL] [Abstract][Full Text] [Related]
20. Epidermal growth factor receptor activation in prostate cancer by three novel missense mutations. Cai CQ; Peng Y; Buckley MT; Wei J; Chen F; Liebes L; Gerald WL; Pincus MR; Osman I; Lee P Oncogene; 2008 May; 27(22):3201-10. PubMed ID: 18193092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]