BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24036953)

  • 1. Effect of donor-acceptor orientation on solvent-dependent three-photon activity in through-space charge-transfer systems--case study of [2,2]-paracyclophane derivatives.
    Alam MM; Chattopadhyaya M; Chakrabarti S; Ruud K
    Phys Chem Chem Phys; 2013 Oct; 15(40):17570-6. PubMed ID: 24036953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the origin of large two-photon activity of DANS molecule.
    Alam MM; Chattopadhyaya M; Chakrabarti S
    J Phys Chem A; 2012 Nov; 116(45):11034-40. PubMed ID: 23092388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density functional response theory calculations of three-photon absorption.
    Cronstrand P; Jansik B; Jonsson D; Luo Y; Agren H
    J Chem Phys; 2004 Nov; 121(19):9239-46. PubMed ID: 15538844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Polarity Solvents Decreasing the Two-Photon Transition Probability of Through-Space Charge-Transfer Systems - A Surprising In Silico Observation.
    Alam MM; Chattopadhyaya M; Chakrabarti S; Ruud K
    J Phys Chem Lett; 2012 Apr; 3(8):961-6. PubMed ID: 26286556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Packing of Large Two- and Three-Photon Activity Into Smallest Possible Unsymmetrical Fluorene Chromophores.
    Kundi V; Thankachan PP
    J Phys Chem A; 2016 May; 120(17):2757-70. PubMed ID: 27054876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of π-conjugation on competitive pathways: charge transfer or electron transfer in new D-π-A and D-π-Si-π-A dyads.
    Cho YJ; Lee AR; Kim SY; Cho M; Han WS; Son HJ; Cho DW; Kang SO
    Phys Chem Chem Phys; 2016 Aug; 18(33):22921-8. PubMed ID: 27485173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizations of transition dipoles, charge transfer, and electron-hole coherence on electronic state transitions between excited states for two-photon absorption.
    Sun M; Chen J; Xu H
    J Chem Phys; 2008 Feb; 128(6):064106. PubMed ID: 18282027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent induced channel interference in the two-photon absorption process--a theoretical study with a generalized few-state-model in three dimensions.
    Alam MM; Chattopadhyaya M; Chakrabarti S
    Phys Chem Chem Phys; 2012 Jan; 14(3):1156-65. PubMed ID: 22127437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Intramolecular Through-Space Charge-Transfer States in Donor-Acceptor Charge-Transfer Systems.
    Kumar S; Franca LG; Stavrou K; Crovini E; Cordes DB; Slawin AMZ; Monkman AP; Zysman-Colman E
    J Phys Chem Lett; 2021 Mar; 12(11):2820-2830. PubMed ID: 33719455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of electron acceptor on three-photon absorption cross-section of the fluorene derivatives.
    Liu J; Li G; Wang Y
    J Phys Chem A; 2012 Jul; 116(28):7445-51. PubMed ID: 22765045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New design strategy for the two-photon active material based on push-pull substituted bisanthene molecule.
    Chattopadhyaya M; Alam MM; Chakrabarti S
    J Phys Chem A; 2011 Mar; 115(12):2607-14. PubMed ID: 21375281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores.
    Zhu L; Yi Y; Shuai Z; Brédas JL; Beljonne D; Zojer E
    J Chem Phys; 2006 Jul; 125(4):44101. PubMed ID: 16942128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical theoretical study on the two-photon absorption properties of some selective triaryl borane-1-naphthylphenyl amine based charge transfer molecules.
    Alam MM; Chattopadhyaya M; Chakrabarti S
    Phys Chem Chem Phys; 2011 May; 13(20):9285-92. PubMed ID: 21475766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fingerprints of Through-Bond and Through-Space Exciton and Charge π-Electron Delocalization in Linearly Extended [2.2]Paracyclophanes.
    Zafra JL; Molina Ontoria A; Mayorga Burrezo P; Peña-Alvarez M; Samoc M; Szeremeta J; Ramírez FJ; Lovander MD; Droske CJ; Pappenfus TM; Echegoyen L; López Navarrete JT; Martín N; Casado J
    J Am Chem Soc; 2017 Mar; 139(8):3095-3105. PubMed ID: 28170229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photophysical properties of intramolecular charge transfer in two newly synthesized tribranched donor-pi-acceptor chromophores.
    Jia M; Ma X; Yan L; Wang H; Guo Q; Wang X; Wang Y; Zhan X; Xia A
    J Phys Chem A; 2010 Jul; 114(27):7345-52. PubMed ID: 20568792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent density functional theory (TDDFT) study of the excited charge-transfer state formation of a series of aromatic donor-acceptor systems.
    Jamorski Jödicke C; Lüthi HP
    J Am Chem Soc; 2003 Jan; 125(1):252-64. PubMed ID: 12515528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-soluble [2.2]paracyclophane chromophores with large two-photon action cross sections.
    Woo HY; Hong JW; Liu B; Mikhailovsky A; Korystov D; Bazan GC
    J Am Chem Soc; 2005 Jan; 127(3):820-1. PubMed ID: 15656604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysical properties of oligophenylene ethynylenes modified by donor and/or acceptor groups.
    Yamaguchi Y; Shimoi Y; Ochi T; Wakamiya T; Matsubara Y; Yoshida Z
    J Phys Chem A; 2008 Jun; 112(23):5074-84. PubMed ID: 18491882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge and energy transfer in a bithiophene perylenediimide based donor-acceptor-donor system for use in organic photovoltaics.
    Wenzel J; Dreuw A; Burghardt I
    Phys Chem Chem Phys; 2013 Jul; 15(28):11704-16. PubMed ID: 23753008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-photon absorption in three-dimensional chromophores based on [2.2]-paracyclophane.
    Bartholomew GP; Rumi M; Pond SJ; Perry JW; Tretiak S; Bazan GC
    J Am Chem Soc; 2004 Sep; 126(37):11529-42. PubMed ID: 15366899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.