These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 24037149)
41. [Photoelectrocatalytic degradation of Rhodamine B using mesh Ti/TiO2 electrode]. Liu H; Zhou D; Li X; Yue B Huan Jing Ke Xue; 2002 Jul; 23(4):47-51. PubMed ID: 12371102 [TBL] [Abstract][Full Text] [Related]
42. TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: a combination of highly effective thin-film PEC and conventional PEC processes on a single electrode. Xu Y; He Y; Cao X; Zhong D; Jia J Environ Sci Technol; 2008 Apr; 42(7):2612-7. PubMed ID: 18505005 [TBL] [Abstract][Full Text] [Related]
43. Preparation and characterization of sulfur-doped TiO(2)/Ti photoelectrodes and their photoelectrocatalytic performance. Sun H; Liu H; Ma J; Wang X; Wang B; Han L J Hazard Mater; 2008 Aug; 156(1-3):552-9. PubMed ID: 18258358 [TBL] [Abstract][Full Text] [Related]
44. Reversible chemical tuning of charge carriers for enhanced photoelectrochemical conversion and probing of living cells. Wang Y; Tang J; Zhou T; Da P; Li J; Kong B; Yang Z; Zheng G Small; 2014 Dec; 10(23):4967-74. PubMed ID: 25044916 [TBL] [Abstract][Full Text] [Related]
45. Bromate formation on the non-porous TiO2 photoanode in the photoelectrocatalytic system. Selcuk H; Sarikaya HZ; Bekbolet M; Anderson MA Chemosphere; 2006 Feb; 62(5):715-21. PubMed ID: 16005936 [TBL] [Abstract][Full Text] [Related]
46. Electrically enhanced photodegradation of an azodye (acid orange II) using a Pt/TiO2 film electrode irradiating with an UV lamp. Su J; Quan X; Chen S; Zhao YZ; Chen GH J Environ Sci (China); 2003 Jan; 15(1):60-4. PubMed ID: 12602604 [TBL] [Abstract][Full Text] [Related]
47. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation. Wang GL; Xu JJ; Chen HY Biosens Bioelectron; 2009 Apr; 24(8):2494-8. PubMed ID: 19185483 [TBL] [Abstract][Full Text] [Related]
48. Improving photoelectrochemical reduction of Cr(VI) ions by building α-Fe Wang P; Dong F; Liu M; He H; Huo T; Zhou L; Zhang W Environ Sci Pollut Res Int; 2018 Aug; 25(23):22455-22463. PubMed ID: 29460249 [TBL] [Abstract][Full Text] [Related]
49. Removal of COD and colour in real pharmaceutical wastewater by photoelectrocatalytic oxidation method. Fang T; Liao L; Xu X; Peng J; Jing Y Environ Technol; 2013; 34(5-8):779-86. PubMed ID: 23837329 [TBL] [Abstract][Full Text] [Related]
50. Photoelectrocatalytic production of active chlorine on nanocrystalline titanium dioxide thin-film electrodes. Zanoni MV; Sene JJ; Selcuk H; Anderson MA Environ Sci Technol; 2004 Jun; 38(11):3203-8. PubMed ID: 15224756 [TBL] [Abstract][Full Text] [Related]
51. An innovative photocatalytic technology in the treatment of river water containing humic substances. Selcuk H; Sene JJ; Sarikaya HZ; Bekbolet M; Anderson MA Water Sci Technol; 2004; 49(4):153-8. PubMed ID: 15077964 [TBL] [Abstract][Full Text] [Related]
52. Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol. Pradhan S; Ghosh D; Chen S ACS Appl Mater Interfaces; 2009 Sep; 1(9):2060-5. PubMed ID: 20355833 [TBL] [Abstract][Full Text] [Related]
53. Photocatalytic decomposition of 2-chlorophenol in aqueous solution by UV/TiO2 process with applied external bias voltage. Ku Y; Lee YC; Wang WY J Hazard Mater; 2006 Nov; 138(2):350-6. PubMed ID: 16814464 [TBL] [Abstract][Full Text] [Related]
54. Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting. Cowan AJ; Leng W; Barnes PR; Klug DR; Durrant JR Phys Chem Chem Phys; 2013 Jun; 15(22):8772-8. PubMed ID: 23632463 [TBL] [Abstract][Full Text] [Related]
55. Photoelectrocatalytic performance of a titania-keggin type polyoxometalate-gold nanocomposite modified electrode in methanol oxidation. Pandiyarajan C; Pandikumar A; Ramaraj R Nanotechnology; 2013 Nov; 24(43):435401. PubMed ID: 24077520 [TBL] [Abstract][Full Text] [Related]
56. A comparative study of doped and un-doped sol-gel TiO2 and P25 TiO2 (photo)electrodes. Pooarporn Y; Worayingyong A; Wörner M; Songsiriritthigul P; Braun AM Water Sci Technol; 2007; 55(12):153-60. PubMed ID: 17674842 [TBL] [Abstract][Full Text] [Related]
57. Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: an overview. Zhang Y; Xiong X; Han Y; Zhang X; Shen F; Deng S; Xiao H; Yang X; Yang G; Peng H Chemosphere; 2012 Jun; 88(2):145-54. PubMed ID: 22483728 [TBL] [Abstract][Full Text] [Related]
58. Enhanced photoelectrocatalytic degradation of ammonia by in situ photoelectrogenerated active chlorine on TiO Xiao S; Wan D; Zhang K; Qu H; Peng J J Environ Sci (China); 2016 Dec; 50():103-108. PubMed ID: 28034419 [TBL] [Abstract][Full Text] [Related]
59. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes. Bagastyo AY; Radjenovic J; Mu Y; Rozendal RA; Batstone DJ; Rabaey K Water Res; 2011 Oct; 45(16):4951-9. PubMed ID: 21802107 [TBL] [Abstract][Full Text] [Related]
60. BiFeO3/TiO2 nanotube arrays composite electrode: construction, characterization, and enhanced photoelectrochemical properties. Zhu A; Zhao Q; Li X; Shi Y ACS Appl Mater Interfaces; 2014 Jan; 6(1):671-9. PubMed ID: 24341745 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]