These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24037152)

  • 1. Advanced monitoring of water systems using in situ measurement stations: data validation and fault detection.
    Alferes J; Tik S; Copp J; Vanrolleghem PA
    Water Sci Technol; 2013; 68(5):1022-30. PubMed ID: 24037152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of river water quality monitoring stations by principal component analysis.
    Ouyang Y
    Water Res; 2005 Jul; 39(12):2621-35. PubMed ID: 15993926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring, fault detection and operation prediction of MSW incinerators using multivariate statistical methods.
    Tavares G; Zsigraiová Z; Semiao V; Carvalho Mda G
    Waste Manag; 2011 Jul; 31(7):1635-44. PubMed ID: 21376557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses.
    Chen Q; Wu W; Blanckaert K; Ma J; Huang G
    J Environ Manage; 2012 Nov; 110():116-24. PubMed ID: 22776756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-variate methodology for analyzing pre-existing lake water quality data.
    Lim KY; Surbeck CQ
    J Environ Monit; 2011 Sep; 13(9):2477-87. PubMed ID: 21799998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hasse diagram technique as a tool for water quality assessment.
    Voyslavov T; Tsakovski S; Simeonov V
    Anal Chim Acta; 2013 Apr; 770():29-35. PubMed ID: 23498683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of on-line river water quality monitoring systems using the entropy theory: a case study.
    Karamouz M; Nokhandan AK; Kerachian R; Maksimovic C
    Environ Monit Assess; 2009 Aug; 155(1-4):63-81. PubMed ID: 18663591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-pipe water quality monitoring in water supply systems under steady and unsteady state flow conditions: a quantitative assessment.
    Aisopou A; Stoianov I; Graham NJ
    Water Res; 2012 Jan; 46(1):235-46. PubMed ID: 22094001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced data validation strategy of air quality monitoring network.
    Harkat MF; Mansouri M; Nounou M; Nounou H
    Environ Res; 2018 Jan; 160():183-194. PubMed ID: 28987729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fault diagnosis of the polypropylene production process (UNIPOL PP) using ANFIS.
    Lau CK; Heng YS; Hussain MA; Mohamad Nor MI
    ISA Trans; 2010 Oct; 49(4):559-66. PubMed ID: 20667537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple sensor fault diagnosis for dynamic processes.
    Li CC; Jeng JC
    ISA Trans; 2010 Oct; 49(4):415-32. PubMed ID: 20542268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water toxicity assessment and spatial pollution patterns identification in a Mediterranean River Basin District. Tools for water management and risk analysis.
    Carafa R; Faggiano L; Real M; Munné A; Ginebreda A; Guasch H; Flo M; Tirapu L; von der Ohe PC
    Sci Total Environ; 2011 Sep; 409(20):4269-79. PubMed ID: 21794894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive multiscale principal components analysis for online monitoring of wastewater treatment.
    Lennox J; Rosen C
    Water Sci Technol; 2002; 45(4-5):227-35. PubMed ID: 11936638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllability analysis as a pre-selection method for sensor placement in water distribution systems.
    Diao K; Rauch W
    Water Res; 2013 Oct; 47(16):6097-108. PubMed ID: 23948563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemometric application in classification and assessment of monitoring locations of an urban river system.
    Kannel PR; Lee S; Kanel SR; Khan SP
    Anal Chim Acta; 2007 Jan; 582(2):390-9. PubMed ID: 17386518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of the discrete conductivity and dissolved oxygen monitoring using continuous data series obtained with automated measurement stations.
    D'heygere T; Goethals P; van Griensven A; Vandenberghe V; Bauwens W; Vanrolleghem P; De Pauw N
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):149-53. PubMed ID: 15954576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)--a case study.
    Singh KP; Malik A; Mohan D; Sinha S
    Water Res; 2004 Nov; 38(18):3980-92. PubMed ID: 15380988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water quality assessment using satellite-derived chlorophyll-a within the European directives, in the southeastern Bay of Biscay.
    Novoa S; Chust G; Sagarminaga Y; Revilla M; Borja A; Franco J
    Mar Pollut Bull; 2012 Apr; 64(4):739-50. PubMed ID: 22317791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing water quality monitoring networks using continuous longitudinal monitoring data: a case study of Wen-Rui Tang River, Wenzhou, China.
    Mei K; Zhu Y; Liao L; Dahlgren R; Shang X; Zhang M
    J Environ Monit; 2011 Oct; 13(10):2755-62. PubMed ID: 21915414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.