These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 24037171)

  • 1. Electrochemical oxidation of wastewater - opportunities and drawbacks.
    Woisetschläger D; Humpl B; Koncar M; Siebenhofer M
    Water Sci Technol; 2013; 68(5):1173-9. PubMed ID: 24037171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of electrode materials for the anodic oxidation of a real landfill leachate--comparison between Ti-Ru-Sn ternary oxide, PbO(2) and boron-doped diamond anode.
    Panizza M; Martinez-Huitle CA
    Chemosphere; 2013 Jan; 90(4):1455-60. PubMed ID: 23026163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated treatment of landfill leachates including electrooxidation at pilot plant scale.
    Urtiaga A; Rueda A; Anglada A; Ortiz I
    J Hazard Mater; 2009 Jul; 166(2-3):1530-4. PubMed ID: 19117670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical oxidation for the treatment of textile industry wastewater.
    Radha KV; Sridevi V; Kalaivani K
    Bioresour Technol; 2009 Jan; 100(2):987-90. PubMed ID: 18760596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative treatment of stabilized landfill leachate: coagulation and activated carbon adsorption vs. electrochemical oxidation.
    Papastavrou C; Mantzavinos D; Diamadopoulos E
    Environ Technol; 2009 Dec; 30(14):1547-53. PubMed ID: 20183999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient and energy-saving sectional treatment of landfill leachate with a synergistic system of biochemical treatment and electrochemical oxidation on a boron-doped diamond electrode.
    Zhao G; Pang Y; Liu L; Gao J; Lv B
    J Hazard Mater; 2010 Jul; 179(1-3):1078-83. PubMed ID: 20413218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes.
    Zhu X; Ni J; Lai P
    Water Res; 2009 Sep; 43(17):4347-55. PubMed ID: 19595422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and electrochemical treatment of landfill leachate.
    Orescanin V; Kollar R; Ruk D; Nad K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(3):462-9. PubMed ID: 22320699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment.
    Garcia-Segura S; Keller J; Brillas E; Radjenovic J
    J Hazard Mater; 2015; 283():551-7. PubMed ID: 25464295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.
    Zhu X; Ni J; Wei J; Xing X; Li H
    J Hazard Mater; 2011 May; 189(1-2):127-33. PubMed ID: 21377794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate.
    Anglada A; Urtiaga AM; Ortiz I
    J Hazard Mater; 2010 Sep; 181(1-3):729-35. PubMed ID: 20542632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical oxidation of synthetic tannery wastewater in chloride-free aqueous media.
    Costa CR; Montilla F; Morallón E; Olivi P
    J Hazard Mater; 2010 Aug; 180(1-3):429-35. PubMed ID: 20452722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate.
    Deng Y; Ezyske CM
    Water Res; 2011 Nov; 45(18):6189-94. PubMed ID: 21959093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anodic oxidation of 1,4-dioxane on boron-doped diamond electrodes for wastewater treatment.
    Choi JY; Lee YJ; Shin J; Yang JW
    J Hazard Mater; 2010 Jul; 179(1-3):762-8. PubMed ID: 20381243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of combined membrane biological reactor and electro-oxidation processes for the treatment of landfill leachates.
    Aloui F; Fki F; Loukil S; Sayadi S
    Water Sci Technol; 2009; 60(3):605-14. PubMed ID: 19657155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonium removal from landfill leachate by anodic oxidation.
    Cabeza A; Urtiaga A; Rivero MJ; Ortiz I
    J Hazard Mater; 2007 Jun; 144(3):715-9. PubMed ID: 17346881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applicability of boron-doped diamond electrode to the degradation of chloride-mediated and chloride-free wastewaters.
    Wu M; Zhao G; Li M; Liu L; Li D
    J Hazard Mater; 2009 Apr; 163(1):26-31. PubMed ID: 18656304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation.
    Nasr B; Hsen T; Abdellatif G
    J Environ Manage; 2009 Jan; 90(1):523-30. PubMed ID: 18336990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical oxidation of sulphides in paper mill wastewater by using mixed oxide anodes.
    Särkkä H; Kuhmonen K; Vepsäläinen M; Pulliainen M; Selin J; Rantala P; Kukkamäki E; Sillanpää M
    Environ Technol; 2009 Aug; 30(9):885-92. PubMed ID: 19803327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical degradation of Mordant Blue 13 azo dye using boron-doped diamond and dimensionally stable anodes: influence of experimental parameters and water matrix.
    Kenova TA; Kornienko GV; Golubtsova OA; Kornienko VL; Maksimov NG
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30425-30440. PubMed ID: 30159847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.