BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 24037763)

  • 1. Aluminium-phosphate interactions in the rhizosphere of two bean species: Phaseolus lunatus L. and Phaseolus vulgaris L.
    Mimmo T; Ghizzi M; Cesco S; Tomasi N; Pinton R; Puschenreiter M
    J Sci Food Agric; 2013 Dec; 93(15):3891-6. PubMed ID: 24037763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of aluminium availability on phosphate uptake in Phaseolus vulgaris L. and Phaseolus lunatus L.
    Mimmo T; Sciortino M; Ghizzi M; Gianquinto G; Gessa CE
    Plant Physiol Biochem; 2009 Jan; 47(1):68-72. PubMed ID: 18996705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere.
    Pearse SJ; Veneklaas EJ; Cawthray G; Bolland MD; Lambers H
    New Phytol; 2006; 169(3):515-24. PubMed ID: 16411954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition.
    Ryan MH; Tibbett M; Edmonds-Tibbett T; Suriyagoda LD; Lambers H; Cawthray GR; Pang J
    Plant Cell Environ; 2012 Dec; 35(12):2170-80. PubMed ID: 22632405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance.
    Rangel AF; Rao IM; Horst WJ
    J Exp Bot; 2007; 58(14):3895-904. PubMed ID: 17975208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum.
    Naik D; Smith E; Cumming JR
    Tree Physiol; 2009 Mar; 29(3):423-36. PubMed ID: 19203961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots.
    Wang P; Bi S; Ma L; Han W
    J Agric Food Chem; 2006 Dec; 54(26):10033-9. PubMed ID: 17177538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.).
    Kidd PS; Llugany M; Poschenrieder C; Gunsé B; Barceló J
    J Exp Bot; 2001 Jun; 52(359):1339-52. PubMed ID: 11432953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum.
    Watanabe T; Osaki M
    Tree Physiol; 2002 Aug; 22(11):785-92. PubMed ID: 12184982
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Gu X; Li J; Wang X; He X; Cui Y
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting rDNA evolution in lima bean (Phaseolus lunatus L.) and common bean (P. vulgaris L., Fabaceae).
    Almeida C; Pedrosa-Harand A
    Cytogenet Genome Res; 2011; 132(3):212-7. PubMed ID: 21063080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminium tolerance in plants and the complexing role of organic acids.
    Ma JF; Ryan PR; Delhaize E
    Trends Plant Sci; 2001 Jun; 6(6):273-8. PubMed ID: 11378470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices.
    Rangel AF; Rao IM; Braun HP; Horst WJ
    Physiol Plant; 2010 Feb; 138(2):176-90. PubMed ID: 20053183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries.
    Nazeri NK; Lambers H; Tibbett M; Ryan MH
    Plant Cell Environ; 2014 Apr; 37(4):911-21. PubMed ID: 24112081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia.
    Pérez-Jaramillo JE; de Hollander M; Ramírez CA; Mendes R; Raaijmakers JM; Carrión VJ
    Microbiome; 2019 Aug; 7(1):114. PubMed ID: 31412927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of compost on the mobility of arsenic in soil and its uptake by bean plants (Phaseolus vulgaris L.) irrigated with arsenite-contaminated water.
    Caporale AG; Pigna M; Sommella A; Dynes JJ; Cozzolino V; Violante A
    J Environ Manage; 2013 Oct; 128():837-43. PubMed ID: 23872213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial-temporal analysis of polyethylene glycol-reduced aluminium accumulation and xyloglucan endotransglucosylase action in root tips of common bean (Phaseolus vulgaris).
    Zhang M; Ma Y; Horst WJ; Yang ZB
    Ann Bot; 2016 Jul; 118(1):1-9. PubMed ID: 27106549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonasfluorescens.
    Katiyar V; Goel R
    Microbiol Res; 2003; 158(2):163-8. PubMed ID: 12906389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant adaptations to severely phosphorus-impoverished soils.
    Lambers H; Martinoia E; Renton M
    Curr Opin Plant Biol; 2015 Jun; 25():23-31. PubMed ID: 25912783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.