These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 24037763)
1. Aluminium-phosphate interactions in the rhizosphere of two bean species: Phaseolus lunatus L. and Phaseolus vulgaris L. Mimmo T; Ghizzi M; Cesco S; Tomasi N; Pinton R; Puschenreiter M J Sci Food Agric; 2013 Dec; 93(15):3891-6. PubMed ID: 24037763 [TBL] [Abstract][Full Text] [Related]
2. The influence of aluminium availability on phosphate uptake in Phaseolus vulgaris L. and Phaseolus lunatus L. Mimmo T; Sciortino M; Ghizzi M; Gianquinto G; Gessa CE Plant Physiol Biochem; 2009 Jan; 47(1):68-72. PubMed ID: 18996705 [TBL] [Abstract][Full Text] [Related]
3. Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere. Pearse SJ; Veneklaas EJ; Cawthray G; Bolland MD; Lambers H New Phytol; 2006; 169(3):515-24. PubMed ID: 16411954 [TBL] [Abstract][Full Text] [Related]
4. Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Ryan MH; Tibbett M; Edmonds-Tibbett T; Suriyagoda LD; Lambers H; Cawthray GR; Pang J Plant Cell Environ; 2012 Dec; 35(12):2170-80. PubMed ID: 22632405 [TBL] [Abstract][Full Text] [Related]
5. Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. Rangel AF; Rao IM; Horst WJ J Exp Bot; 2007; 58(14):3895-904. PubMed ID: 17975208 [TBL] [Abstract][Full Text] [Related]
6. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum. Naik D; Smith E; Cumming JR Tree Physiol; 2009 Mar; 29(3):423-36. PubMed ID: 19203961 [TBL] [Abstract][Full Text] [Related]
7. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics. Akhtar MS; Oki Y; Adachi T J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224 [TBL] [Abstract][Full Text] [Related]
8. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots. Wang P; Bi S; Ma L; Han W J Agric Food Chem; 2006 Dec; 54(26):10033-9. PubMed ID: 17177538 [TBL] [Abstract][Full Text] [Related]
9. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). Kidd PS; Llugany M; Poschenrieder C; Gunsé B; Barceló J J Exp Bot; 2001 Jun; 52(359):1339-52. PubMed ID: 11432953 [TBL] [Abstract][Full Text] [Related]
10. Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum. Watanabe T; Osaki M Tree Physiol; 2002 Aug; 22(11):785-92. PubMed ID: 12184982 [TBL] [Abstract][Full Text] [Related]
11. Gu X; Li J; Wang X; He X; Cui Y Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060022 [TBL] [Abstract][Full Text] [Related]
12. Contrasting rDNA evolution in lima bean (Phaseolus lunatus L.) and common bean (P. vulgaris L., Fabaceae). Almeida C; Pedrosa-Harand A Cytogenet Genome Res; 2011; 132(3):212-7. PubMed ID: 21063080 [TBL] [Abstract][Full Text] [Related]
13. Aluminium tolerance in plants and the complexing role of organic acids. Ma JF; Ryan PR; Delhaize E Trends Plant Sci; 2001 Jun; 6(6):273-8. PubMed ID: 11378470 [TBL] [Abstract][Full Text] [Related]
14. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices. Rangel AF; Rao IM; Braun HP; Horst WJ Physiol Plant; 2010 Feb; 138(2):176-90. PubMed ID: 20053183 [TBL] [Abstract][Full Text] [Related]
15. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Nazeri NK; Lambers H; Tibbett M; Ryan MH Plant Cell Environ; 2014 Apr; 37(4):911-21. PubMed ID: 24112081 [TBL] [Abstract][Full Text] [Related]
16. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Pérez-Jaramillo JE; de Hollander M; Ramírez CA; Mendes R; Raaijmakers JM; Carrión VJ Microbiome; 2019 Aug; 7(1):114. PubMed ID: 31412927 [TBL] [Abstract][Full Text] [Related]
17. Influence of compost on the mobility of arsenic in soil and its uptake by bean plants (Phaseolus vulgaris L.) irrigated with arsenite-contaminated water. Caporale AG; Pigna M; Sommella A; Dynes JJ; Cozzolino V; Violante A J Environ Manage; 2013 Oct; 128():837-43. PubMed ID: 23872213 [TBL] [Abstract][Full Text] [Related]
18. Spatial-temporal analysis of polyethylene glycol-reduced aluminium accumulation and xyloglucan endotransglucosylase action in root tips of common bean (Phaseolus vulgaris). Zhang M; Ma Y; Horst WJ; Yang ZB Ann Bot; 2016 Jul; 118(1):1-9. PubMed ID: 27106549 [TBL] [Abstract][Full Text] [Related]
19. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonasfluorescens. Katiyar V; Goel R Microbiol Res; 2003; 158(2):163-8. PubMed ID: 12906389 [TBL] [Abstract][Full Text] [Related]