These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24037947)

  • 1. Sequence context and crosslinking mechanism affect the efficiency of in vivo capture of a protein-protein interaction.
    Lancia JK; Nwokoye A; Dugan A; Joiner C; Pricer R; Mapp AK
    Biopolymers; 2014 Apr; 101(4):391-7. PubMed ID: 24037947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein-Protein Interactions.
    Joiner CM; Breen ME; Clayton J; Mapp AK
    Chembiochem; 2017 Jan; 18(2):181-184. PubMed ID: 27966261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of nonnatural amino acid mutagenesis on the in vivo function and binding modes of a transcriptional activator.
    Majmudar CY; Lee LW; Lancia JK; Nwokoye A; Wang Q; Wands AM; Wang L; Mapp AK
    J Am Chem Soc; 2009 Oct; 131(40):14240-2. PubMed ID: 19764747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-deficient p-benzoyl-l-phenylalanine derivatives increase covalent chemical capture yields for protein-protein interactions.
    Joiner CM; Breen ME; Mapp AK
    Protein Sci; 2019 Jun; 28(6):1163-1170. PubMed ID: 30977234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vivo photo-cross-linking approach reveals a homodimerization domain of Aha1 in S. cerevisiae.
    Berg M; Michalowski A; Palzer S; Rupp S; Sohn K
    PLoS One; 2014; 9(3):e89436. PubMed ID: 24614167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo.
    Krishnamurthy M; Dugan A; Nwokoye A; Fung YH; Lancia JK; Majmudar CY; Mapp AK
    ACS Chem Biol; 2011 Dec; 6(12):1321-6. PubMed ID: 21977905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRIC: Capturing the direct cellular targets of promoter-bound transcriptional activators.
    Dugan A; Pricer R; Katz M; Mapp AK
    Protein Sci; 2016 Aug; 25(8):1371-7. PubMed ID: 27213278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch.
    Egriboz O; Goswami S; Tao X; Dotts K; Schaeffer C; Pilauri V; Hopper JE
    Mol Cell Biol; 2013 Sep; 33(18):3667-74. PubMed ID: 23858060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between transcriptional activator protein LAC9 and negative regulatory protein GAL80.
    Salmeron JM; Langdon SD; Johnston SA
    Mol Cell Biol; 1989 Jul; 9(7):2950-6. PubMed ID: 2550790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80.
    Ma J; Ptashne M
    Cell; 1987 Jul; 50(1):137-42. PubMed ID: 3297349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-DNA photo-crosslinking with a genetically encoded benzophenone-containing amino acid.
    Lee HS; Dimla RD; Schultz PG
    Bioorg Med Chem Lett; 2009 Sep; 19(17):5222-4. PubMed ID: 19643606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific proximity ligation provides molecular insights into biologically relevant interfaces of protein-protein interaction.
    Shin G; Lim SI
    Biochem Biophys Res Commun; 2020 Dec; 533(4):932-937. PubMed ID: 33008597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediator acts upstream of the transcriptional activator Gal4.
    Ang K; Ee G; Ang E; Koh E; Siew WL; Chan YM; Nur S; Tan YS; Lehming N
    PLoS Biol; 2012; 10(3):e1001290. PubMed ID: 22479149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GAL4 mutations that separate the transcriptional activation and GAL80-interactive functions of the yeast GAL4 protein.
    Salmeron JM; Leuther KK; Johnston SA
    Genetics; 1990 May; 125(1):21-7. PubMed ID: 2187743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene activation by dissociation of an inhibitor from a transcriptional activation domain.
    Jiang F; Frey BR; Evans ML; Friel JC; Hopper JE
    Mol Cell Biol; 2009 Oct; 29(20):5604-10. PubMed ID: 19651897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic study of a site-specifically cross-linked protein complex with a genetically incorporated photoreactive amino acid.
    Sato S; Mimasu S; Sato A; Hino N; Sakamoto K; Umehara T; Yokoyama S
    Biochemistry; 2011 Jan; 50(2):250-7. PubMed ID: 21128684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding.
    Anders A; Lilie H; Franke K; Kapp L; Stelling J; Gilles ED; Breunig KD
    J Biol Chem; 2006 Sep; 281(39):29337-48. PubMed ID: 16867978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nondissociation of GAL4 and GAL80 in vivo after galactose induction.
    Leuther KK; Johnston SA
    Science; 1992 May; 256(5061):1333-5. PubMed ID: 1598579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80.
    Parthun MR; Jaehning JA
    Mol Cell Biol; 1992 Nov; 12(11):4981-7. PubMed ID: 1406674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activating regions of yeast transcription factors must have both acidic and hydrophobic amino acids.
    Ruden DM
    Chromosoma; 1992 Mar; 101(5-6):342-8. PubMed ID: 1576884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.