BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24037989)

  • 41. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis.
    Long Z; Shen Z; Wu D; Qin J; Lin B
    Lab Chip; 2007 Dec; 7(12):1819-24. PubMed ID: 18030406
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Capillary electrophoresis with electrochemiluminescence detection: fundamental theory, apparatus, and applications.
    Guo L; Fu F; Chen G
    Anal Bioanal Chem; 2011 Apr; 399(10):3323-43. PubMed ID: 21181136
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.
    Scherer JR; Liu P; Mathies RA
    Rev Sci Instrum; 2010 Nov; 81(11):113105. PubMed ID: 21133459
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A portable lab-on-a-chip instrument based on MCE with dual top-bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge.
    Ansari K; Ying JY; Hauser PC; de Rooij NF; Rodriguez I
    Electrophoresis; 2013 May; 34(9-10):1390-9. PubMed ID: 23420647
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of polymerase chain reaction fragments using a conducting polymer-modified screen-printed electrode in a microfluidic device.
    Shiddiky MJ; Park DS; Shim YB
    Electrophoresis; 2005 Dec; 26(24):4656-63. PubMed ID: 16283692
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescence monitoring of microchip capillary electrophoresis separation with monolithically integrated waveguides.
    Dongre C; Dekker R; Hoekstra HJ; Pollnau M; Martinez-Vazquez R; Osellame R; Cerullo G; Ramponi R; van Weeghel R; Besselink GA; van den Vlekkert HH
    Opt Lett; 2008 Nov; 33(21):2503-5. PubMed ID: 18978901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection.
    Kim JH; Kang CJ; Kim YS
    Biosens Bioelectron; 2005 May; 20(11):2314-7. PubMed ID: 15797332
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Forced splitting of fractions in CE.
    Zalewski DR; Schlautmann S; Gardeniers HJ
    Electrophoresis; 2008 Dec; 29(24):4887-93. PubMed ID: 19130596
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chip-based CE for rapid separation of 8-aminopyrene-1,3,6-trisulfonic acid (APTS) derivatized glycans.
    Smejkal P; Szekrényes A; Ryvolová M; Foret F; Guttman A; Bek F; Macka M
    Electrophoresis; 2010 Nov; 31(22):3783-6. PubMed ID: 20972992
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis.
    Kaigala GV; Hoang VN; Stickel A; Lauzon J; Manage D; Pilarski LM; Backhouse CJ
    Analyst; 2008 Mar; 133(3):331-8. PubMed ID: 18299747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and implementation of an automated liquid-phase microextraction-chip system coupled on-line with high performance liquid chromatography.
    Li B; Petersen NJ; Payán MD; Hansen SH; Pedersen-Bjergaard S
    Talanta; 2014 Mar; 120():224-9. PubMed ID: 24468363
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enantioseparation using sulfated cyclosophoraoses as a novel chiral additive in capillary electrophoresis.
    Park H; Lee S; Kang S; Jung Y; Jung S
    Electrophoresis; 2004 Aug; 25(16):2671-4. PubMed ID: 15351997
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chip-CE/MS using a flat low-sheath-flow interface.
    Li FA; Huang JL; Her GR
    Electrophoresis; 2008 Dec; 29(24):4938-43. PubMed ID: 19130573
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection.
    Wang Y; Chen H; He Q; Soper SA
    Electrophoresis; 2008 May; 29(9):1881-8. PubMed ID: 18393335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.
    Li MW; Martin RS
    Electrophoresis; 2007 Jul; 28(14):2478-88. PubMed ID: 17577199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates.
    Segato TP; Coltro WK; Almeida AL; Piazetta MH; Gobbi AL; Mazo LH; Carrilho E
    Electrophoresis; 2010 Aug; 31(15):2526-33. PubMed ID: 20665913
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers.
    Benhabib M; Chiesl TN; Stockton AM; Scherer JR; Mathies RA
    Anal Chem; 2010 Mar; 82(6):2372-9. PubMed ID: 20151682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of perphenazine and fluphenazine by capillary electrophoresis coupled with tris (2,2'-bipyridyl) ruthenium (II) electrochemiluminescence detection.
    Xu L; Li L; Huang J; You T
    Talanta; 2014 Jan; 118():1-6. PubMed ID: 24274263
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous determination of methylephedrine and pseudoephedrine in human urine by CE with electrochemiluminescence detection and its application to pharmacokeinetics.
    Liu YM; Tian W; Jia YX; Yue HY
    Biomed Chromatogr; 2009 Nov; 23(11):1138-44. PubMed ID: 19492345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.