These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 24038030)
1. A rapid, straightforward, and print house compatible mass fabrication method for integrating 3D paper-based microfluidics. Xiao L; Liu X; Zhong R; Zhang K; Zhang X; Zhou X; Lin B; Du Y Electrophoresis; 2013 Nov; 34(20-21):3003-7. PubMed ID: 24038030 [TBL] [Abstract][Full Text] [Related]
2. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Chiang CK; Kurniawan A; Kao CY; Wang MJ Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613 [TBL] [Abstract][Full Text] [Related]
3. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics. Wang W; Zhao S; Pan T Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096 [TBL] [Abstract][Full Text] [Related]
4. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices. Liu M; Zhang C; Liu F Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382 [TBL] [Abstract][Full Text] [Related]
5. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Lu Y; Shi W; Jiang L; Qin J; Lin B Electrophoresis; 2009 May; 30(9):1497-500. PubMed ID: 19340829 [TBL] [Abstract][Full Text] [Related]
6. 3D printed microfluidics for biological applications. Ho CM; Ng SH; Li KH; Yoon YJ Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523 [TBL] [Abstract][Full Text] [Related]
7. Single-step batch fabrication of microfluidic paper-based analytical devices with a 3D printer and their applications in nanoenzyme-enhanced visual detection of dopamine. Yan Y; Huang X; Yuan L; Tang Y; Zhu W; Du H; Nie J; Zhang L; Liao S; Tang X; Zhang Y Anal Bioanal Chem; 2024 Jul; 416(18):4131-4141. PubMed ID: 38780654 [TBL] [Abstract][Full Text] [Related]
8. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Dungchai W; Chailapakul O; Henry CS Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884 [TBL] [Abstract][Full Text] [Related]
9. Simple Way To Fabricate Novel Paper-Based Valves Using Plastic Comb Binding Spines. Han J; Qi A; Zhou J; Wang G; Li B; Chen L ACS Sens; 2018 Sep; 3(9):1789-1794. PubMed ID: 30080022 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Lu Y; Shi W; Qin J; Lin B Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582 [TBL] [Abstract][Full Text] [Related]
11. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels. Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747 [TBL] [Abstract][Full Text] [Related]
12. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Songjaroen T; Dungchai W; Chailapakul O; Laiwattanapaisal W Talanta; 2011 Oct; 85(5):2587-93. PubMed ID: 21962687 [TBL] [Abstract][Full Text] [Related]
14. Microcontact printing-based fabrication of digital microfluidic devices. Watson MW; Abdelgawad M; Ye G; Yonson N; Trottier J; Wheeler AR Anal Chem; 2006 Nov; 78(22):7877-85. PubMed ID: 17105183 [TBL] [Abstract][Full Text] [Related]
15. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026 [TBL] [Abstract][Full Text] [Related]
16. Development of paper-based microfluidic device for the determination of nitrite in meat. Trofimchuk E; Hu Y; Nilghaz A; Hua MZ; Sun S; Lu X Food Chem; 2020 Jun; 316():126396. PubMed ID: 32066068 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of paper-based microfluidic sensors by printing. Li X; Tian J; Garnier G; Shen W Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546 [TBL] [Abstract][Full Text] [Related]
19. Thread as a matrix for biomedical assays. Reches M; Mirica KA; Dasgupta R; Dickey MD; Butte MJ; Whitesides GM ACS Appl Mater Interfaces; 2010 Jun; 2(6):1722-8. PubMed ID: 20496913 [TBL] [Abstract][Full Text] [Related]
20. Paper-based microfluidic colorimetric sensor on a 3D printed support for quantitative detection of nitrite in aquatic environments. Rajasulochana P; Ganesan Y; Kumar PS; Mahalaxmi S; Tasneem F; Ponnuchamy M; Kapoor A Environ Res; 2022 May; 208():112745. PubMed ID: 35051426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]