These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 240381)
1. Cobalt-cytochrome c. II. Magnetic resonance spectra and conformational transitions. Dickinson LC; Chien JC Biochemistry; 1975 Aug; 14(16):3534-42. PubMed ID: 240381 [TBL] [Abstract][Full Text] [Related]
2. Cobalt-cytochrome c. I. Preparation, properties, and enzymic activity. Dickinson LC; Chien JC Biochemistry; 1975 Aug; 14(16):3526-34. PubMed ID: 169880 [TBL] [Abstract][Full Text] [Related]
3. Spin-equilibrium and heme-ligand alteration in a high-potential monoheme cytochrome (cytochrome c554) from Achromobacter cycloclastes, a denitrifying organism. Saraiva LM; Liu MY; Payne WJ; Legall J; Moura JJ; Moura I Eur J Biochem; 1990 Apr; 189(2):333-41. PubMed ID: 2159881 [TBL] [Abstract][Full Text] [Related]
4. Multiple low spin forms of the cytochrome c ferrihemochrome. EPR spectra of various eukaryotic and prokaryotic cytochromes c. Brautigan DL; Feinberg BA; Hoffman BM; Margoliash E; Preisach J; Blumberg WE J Biol Chem; 1977 Jan; 252(2):574-82. PubMed ID: 13072 [TBL] [Abstract][Full Text] [Related]
5. Modulation of the ligand-field anisotropy in a series of ferric low-spin cytochrome c mutants derived from Pseudomonas aeruginosa cytochrome c-551 and Nitrosomonas europaea cytochrome c-552: a nuclear magnetic resonance and electron paramagnetic resonance study. Zoppellaro G; Harbitz E; Kaur R; Ensign AA; Bren KL; Andersson KK J Am Chem Soc; 2008 Nov; 130(46):15348-60. PubMed ID: 18947229 [TBL] [Abstract][Full Text] [Related]
6. Structure of zinc-substituted cytochrome c: nuclear magnetic resonance and optical spectroscopic studies. Anni H; Vanderkooi JM; Mayne L Biochemistry; 1995 May; 34(17):5744-53. PubMed ID: 7727435 [TBL] [Abstract][Full Text] [Related]
7. Ferricytochrome c oxidation of cobaltocytochrome c. Comparison of experiments with electron-transfer theories. Chien JC; Gibson HL; Dickinson LC Biochemistry; 1978 Jun; 17(13):2579-84. PubMed ID: 209821 [TBL] [Abstract][Full Text] [Related]
8. Cytochrome c: observation of numerous single-carbon sites of the reduced and oxidized species by means of natural-abundance 13C nuclear magnetic resonance spectroscopy. Oldfield E; Allerhand A Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3531-5. PubMed ID: 4357878 [TBL] [Abstract][Full Text] [Related]
9. Assignment of paramagnetically shifted resonances in the 1H NMR spectrum of horse ferricytochrome c. Feng YQ; Roder H; Englander SW Biophys J; 1990 Jan; 57(1):15-22. PubMed ID: 2153419 [TBL] [Abstract][Full Text] [Related]
10. The aromatic residues of bovine pancreatic ribonuclease studied by 1H nuclear magnetic resonance. Lenstra JA; Bolscher BG; Beintema JJ; Kaptein R Eur J Biochem; 1979 Aug; 98(2):385-97. PubMed ID: 39752 [TBL] [Abstract][Full Text] [Related]
11. Angular dependences of perpendicular and parallel mode electron paramagnetic resonance of oxidized beef heart cytochrome c oxidase. Hunter DJ; Oganesyan VS; Salerno JC; Butler CS; Ingledew WJ; Thomson AJ Biophys J; 2000 Jan; 78(1):439-50. PubMed ID: 10620307 [TBL] [Abstract][Full Text] [Related]
12. Assignment of the heme c resonances in the 360 MHz H NMR spectra of cytochrome c. Keller RM; Wüthrich K Biochim Biophys Acta; 1978 Mar; 533(1):195-208. PubMed ID: 205265 [TBL] [Abstract][Full Text] [Related]
14. Characterization of mutant Met100Lys of cytochrome c-550 from Thiobacillus versutus with lysine-histidine heme ligation. Ubbink M; Campos AP; Teixeira M; Hunt NI; Hill HA; Canters GW Biochemistry; 1994 Aug; 33(33):10051-9. PubMed ID: 8060974 [TBL] [Abstract][Full Text] [Related]
15. NMR and EPR studies on a monoheme cytochrome c550 isolated from Bacillus halodenitrificans. Saraiva LM; Denariaz G; Liu MY; Payne WJ; Le Gall J; Moura I Eur J Biochem; 1992 Mar; 204(3):1131-9. PubMed ID: 1312933 [TBL] [Abstract][Full Text] [Related]
16. pH-dependent equilibria of yeast Met80Ala-iso-1-cytochrome c probed by NMR spectroscopy: a comparison with the wild-type protein. Banci L; Bertini I; Bren KL; Gray HB; Turano P Chem Biol; 1995 Jun; 2(6):377-83. PubMed ID: 9383439 [TBL] [Abstract][Full Text] [Related]
17. The role of lysine 99 of Thiobacillus versutus cytochrome c-550 in the alkaline transition. Ubbink M; Warmerdam GC; Campos AP; Teixeira M; Canters GW FEBS Lett; 1994 Aug; 351(1):100-4. PubMed ID: 8076674 [TBL] [Abstract][Full Text] [Related]
18. Proton NMR studies of horse ferricytochrome c. Completion of the assignment of the well resolved hyperfine shifted resonances. Santos H; Turner DL FEBS Lett; 1987 Dec; 226(1):179-85. PubMed ID: 2826254 [TBL] [Abstract][Full Text] [Related]
19. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c. Feng Y; Roder H; Englander SW Biochemistry; 1990 Apr; 29(14):3494-504. PubMed ID: 2162193 [TBL] [Abstract][Full Text] [Related]
20. Binding sites for Mg(II) in H(+)-ATPase from Bacillus PS3 and in the alpha 3 beta 3 gamma subcomplex studied by one-dimensional ESEEM and two-dimensional HYSCORE spectroscopy of oxovanadium(IV) complexes: a possible role for beta-His-324. Buy C; Matsui T; Andrianambinintsoa S; Sigalat C; Girault G; Zimmermann JL Biochemistry; 1996 Nov; 35(45):14281-93. PubMed ID: 8916914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]