BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24038302)

  • 1. Subcomponent self-assembly: a quick way to new metallogels.
    Bunzen H; Nonappa ; Kalenius E; Hietala S; Kolehmainen E
    Chemistry; 2013 Sep; 19(39):12978-81. PubMed ID: 24038302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistimuli-Responsive Self-Healable and Moldable Nickel(II)-Based Gels for Reversible Gas Adsorption and Palladium Sequestration via Gel-to-Gel Transformation.
    Saha E; Mitra J
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10718-10728. PubMed ID: 30807089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridyl-Amides as a Multimode Self-Assembly Driver for the Design of a Stimuli-Responsive π-Gelator.
    Kartha KK; Praveen VK; Babu SS; Cherumukkil S; Ajayaghosh A
    Chem Asian J; 2015 Oct; 10(10):2250-6. PubMed ID: 25930244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Stimuli-Responsive Metallogels.
    Liu Z; Zhao X; Chu Q; Feng Y
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Phenolic Supramolecular Gelation.
    Rahim MA; Björnmalm M; Suma T; Faria M; Ju Y; Kempe K; Müllner M; Ejima H; Stickland AD; Caruso F
    Angew Chem Int Ed Engl; 2016 Oct; 55(44):13803-13807. PubMed ID: 27689940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multistimuli-responsive supramolecular gels: design rationale, recent advances, and perspectives.
    Sun Z; Huang Q; He T; Li Z; Zhang Y; Yi L
    Chemphyschem; 2014 Aug; 15(12):2421-30. PubMed ID: 24953044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular metallogels with bulk self-healing properties prepared by in situ metal complexation.
    Häring M; Díaz DD
    Chem Commun (Camb); 2016 Nov; 52(89):13068-13081. PubMed ID: 27711325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts.
    Sun J; Bao X
    Chemistry; 2008; 14(25):7478-88. PubMed ID: 18668502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new class of dendritic metallogels with multiple stimuli-responsiveness and as templates for the in situ synthesis of silver nanoparticles.
    Liu ZX; Feng Y; Zhao ZY; Yan ZC; He YM; Luo XJ; Liu CY; Fan QH
    Chemistry; 2014 Jan; 20(2):533-41. PubMed ID: 24338861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bipyridine based metallogels: an unprecedented difference in photochemical and chemical reduction in the in situ nanoparticle formation.
    Tatikonda R; Bertula K; Nonappa ; Hietala S; Rissanen K; Haukka M
    Dalton Trans; 2017 Feb; 46(9):2793-2802. PubMed ID: 28174774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular gels formed from multi-component low molecular weight species.
    Buerkle LE; Rowan SJ
    Chem Soc Rev; 2012 Sep; 41(18):6089-102. PubMed ID: 22677951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallogels self-assembled from linear rod-like platinum complexes: influence of the linkage.
    Chen M; Wei C; Wu X; Khan M; Huang N; Zhang G; Li L
    Chemistry; 2015 Mar; 21(11):4213-7. PubMed ID: 25644237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-responsive supramolecular gels through hierarchical self-assembly of discrete rhomboidal metallacycles.
    Zhao GZ; Chen LJ; Wang W; Zhang J; Yang G; Wang DX; Yu Y; Yang HB
    Chemistry; 2013 Jul; 19(31):10094-100. PubMed ID: 23843226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels.
    Weng W; Beck JB; Jamieson AM; Rowan SJ
    J Am Chem Soc; 2006 Sep; 128(35):11663-72. PubMed ID: 16939292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells.
    Komatsu H; Tsukiji S; Ikeda M; Hamachi I
    Chem Asian J; 2011 Sep; 6(9):2368-75. PubMed ID: 21721133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in metallogels.
    Tam AY; Yam VW
    Chem Soc Rev; 2013 Feb; 42(4):1540-67. PubMed ID: 23296361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose-Based Metallogels-Part 2: Physico-Chemical Properties and Biological Stability.
    Mikhailidi A; Volf I; Belosinschi D; Tofanica BM; Ungureanu E
    Gels; 2023 Aug; 9(8):. PubMed ID: 37623088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallogels: Availability, Applicability, and Advanceability.
    Wu H; Zheng J; Kjøniksen AL; Wang W; Zhang Y; Ma J
    Adv Mater; 2019 Mar; 31(12):e1806204. PubMed ID: 30680801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-Responsive Metallogels for Synthesizing Ag Nanoparticles and Sensing Hazardous Gases.
    Biswas P; Ganguly S; Dastidar P
    Chem Asian J; 2018 Jun; ():. PubMed ID: 29863308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Ions Trigger the Gelation of Cysteine-Containing Peptide-Appended Coordination Cages.
    Li M; Zhu H; Adorinni S; Xue W; Heard A; Garcia AM; Kralj S; Nitschke JR; Marchesan S
    Angew Chem Int Ed Engl; 2024 May; ():e202406909. PubMed ID: 38701043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.