These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24038302)

  • 41. Facile fabrication of multistimuli-responsive metallo-supramolecular core cross-linked block copolymer micelles.
    Ge Z; Liu S
    Macromol Rapid Commun; 2013 Jun; 34(11):922-30. PubMed ID: 23526715
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two-component hydrogels comprising fatty acids and amines: structure, properties, and application as a template for the synthesis of metal nanoparticles.
    Basit H; Pal A; Sen S; Bhattacharya S
    Chemistry; 2008; 14(21):6534-45. PubMed ID: 18537217
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels.
    Hu J; Zhang G; Liu S
    Chem Soc Rev; 2012 Sep; 41(18):5933-49. PubMed ID: 22695880
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crops: a green approach toward self-assembled soft materials.
    Vemula PK; John G
    Acc Chem Res; 2008 Jun; 41(6):769-82. PubMed ID: 18507403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An iminoboronate construction set for subcomponent self-assembly.
    Hutin M; Bernardinelli G; Nitschke JR
    Chemistry; 2008; 14(15):4585-93. PubMed ID: 18389504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers.
    Nie Z; Fava D; Kumacheva E; Zou S; Walker GC; Rubinstein M
    Nat Mater; 2007 Aug; 6(8):609-14. PubMed ID: 17618291
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly.
    Nitschke JR
    Acc Chem Res; 2007 Feb; 40(2):103-12. PubMed ID: 17309191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrasound stimulated nucleation and growth of a dye assembly into extended gel nanostructures.
    Malicka JM; Sandeep A; Monti F; Bandini E; Gazzano M; Ranjith C; Praveen VK; Ajayaghosh A; Armaroli N
    Chemistry; 2013 Sep; 19(39):12991-3001. PubMed ID: 23913577
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two-component supramolecular metallogels with the presence of Pt-Pt metal-metal interactions.
    Gao Z; Korevaar PA; Zhong R; Wu Z; Wang F
    Chem Commun (Camb); 2018 Aug; 54(70):9857-9860. PubMed ID: 30113055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ion gels by self-assembly of a triblock copolymer in an ionic liquid.
    He Y; Boswell PG; Bühlmann P; Lodge TP
    J Phys Chem B; 2007 May; 111(18):4645-52. PubMed ID: 17474692
    [TBL] [Abstract][Full Text] [Related]  

  • 51. What kind of "soft materials" can we design from molecular gels?
    Dawn A; Shiraki T; Haraguchi S; Tamaru S; Shinkai S
    Chem Asian J; 2011 Feb; 6(2):266-82. PubMed ID: 20715040
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solvent-polarity-tuned morphology and inversion of supramolecular chirality in a self-assembled pyridylpyrazole-linked glutamide derivative: nanofibers, nanotwists, nanotubes, and microtubes.
    Jin Q; Zhang L; Liu M
    Chemistry; 2013 Jul; 19(28):9234-41. PubMed ID: 23729195
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel strategy for the design of smart supramolecular gels: controlling stimuli-response properties through competitive coordination of two different metal ions.
    Lin Q; Sun B; Yang QP; Fu YP; Zhu X; Zhang YM; Wei TB
    Chem Commun (Camb); 2014 Sep; 50(73):10669-71. PubMed ID: 25077771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Supramolecular chirality in organo-, hydro-, and metallogels derived from bis-amides of L-(+)-tartaric acid: formation of highly aligned 1D silica fibers and evidence of 5-c net SnS topology in a metallogel network.
    Das UK; Dastidar P
    Chemistry; 2012 Oct; 18(41):13079-90. PubMed ID: 22961889
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-assembled nanotapes of oligo(p-phenylene vinylene)s: sol-gel-controlled optical properties in fluorescent pi-electronic gels.
    George SJ; Ajayaghosh A
    Chemistry; 2005 May; 11(11):3217-27. PubMed ID: 15736274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2'-yl)pyridine complexes upon a gel-to-sol phase transition at elevated temperatures.
    Tam AY; Wong KM; Yam VW
    J Am Chem Soc; 2009 May; 131(17):6253-60. PubMed ID: 19354251
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hierarchical self-assembly of supramolecular spintronic modules into 1D- and 2D-architectures with emergence of magnetic properties.
    Ruben M; Ziener U; Lehn JM; Ksenofontov V; Gütlich P; Vaughan GB
    Chemistry; 2004 Dec; 11(1):94-100. PubMed ID: 15551319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward self-constructing materials: a systems chemistry approach.
    Giuseppone N
    Acc Chem Res; 2012 Dec; 45(12):2178-88. PubMed ID: 22533472
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional supramolecular assemblies derived from dendritic building blocks.
    Park C; Lee J; Kim C
    Chem Commun (Camb); 2011 Nov; 47(44):12042-56. PubMed ID: 21785775
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical nano-gardens: growth of salt nanowires from supramolecular self-assembly gels.
    Daly R; Kotova O; Boese M; Gunnlaugsson T; Boland JJ
    ACS Nano; 2013 Jun; 7(6):4838-45. PubMed ID: 23663045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.