These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24038434)

  • 1. Plasmonic scissors for molecular design.
    Sun M; Zhang Z; Kim ZH; Zheng H; Xu H
    Chemistry; 2013 Oct; 19(44):14958-62. PubMed ID: 24038434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors.
    Zhang Z; Sheng S; Zheng H; Xu H; Sun M
    Nanoscale; 2014 May; 6(9):4903-8. PubMed ID: 24671142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS.
    Zhang Z; Sun M; Ruan P; Zheng H; Xu H
    Nanoscale; 2013 May; 5(10):4151-5. PubMed ID: 23575811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
    Fang Y; Zhang Z; Chen L; Sun M
    Phys Chem Chem Phys; 2015 Jan; 17(2):783-94. PubMed ID: 25424492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy.
    Sun M; Zhang Z; Zheng H; Xu H
    Sci Rep; 2012; 2():647. PubMed ID: 22970339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS.
    Zhang Z; Chen L; Sun M; Ruan P; Zheng H; Xu H
    Nanoscale; 2013 Apr; 5(8):3249-52. PubMed ID: 23512070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy.
    Liu Y; Zhao Y; Zhang L; Yan Y; Jiang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():539-546. PubMed ID: 31078821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational modes of aminothiophenol: a TERS and DFT study.
    Merlen A; Chaigneau M; Coussan S
    Phys Chem Chem Phys; 2015 Jul; 17(29):19134-8. PubMed ID: 26133906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free monitoring of plasmonic catalysis on the nanoscale.
    Zhang Z; Deckert-Gaudig T; Deckert V
    Analyst; 2015 Jul; 140(13):4325-35. PubMed ID: 26000344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Surface Redox Chemistry Triggered by Plasmon-Generated Hot Carriers.
    Yin H; Lan JG; Goubert G; Wang YH; Li JF; Zenobi R
    Small; 2019 Nov; 15(47):e1903674. PubMed ID: 31588678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-dependent plasmonic catalysis of 4-nitrobenzenethiol in aqueous environment.
    Wang J; Dong Y; Li Y; Zhang Z; Ma F
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():542-5. PubMed ID: 26433340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Peptides Dissociate in Plasmonic Hot Spots.
    Szczerbiński J; Metternich JB; Goubert G; Zenobi R
    Small; 2020 Jan; 16(4):e1905197. PubMed ID: 31894644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.
    Fang Y; Zhang Z; Sun M
    Rev Sci Instrum; 2016 Mar; 87(3):033104. PubMed ID: 27036755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry.
    Szczerbiński J; Gyr L; Kaeslin J; Zenobi R
    Nano Lett; 2018 Nov; 18(11):6740-6749. PubMed ID: 30277787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tip-Enhanced Raman Spectroscopy with Picosecond Pulses.
    Klingsporn JM; Sonntag MD; Seideman T; Van Duyne RP
    J Phys Chem Lett; 2014 Jan; 5(1):106-10. PubMed ID: 26276188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Does a Plasmon-Induced Hot Charge Carrier Break a C-C Bond?
    Huh H; Trinh HD; Lee D; Yoon S
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24715-24724. PubMed ID: 31192584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Photocatalytic Activity of Gold and Gold-Palladium Nanostructures Revealed by Tip-Enhanced Raman Spectroscopy.
    Li Z; Wang R; Kurouski D
    J Phys Chem Lett; 2020 Jul; 11(14):5531-5537. PubMed ID: 32568534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing plasmon-induced surface reactions using two-dimensional correlation vibrational spectroscopy.
    Singh R; Yadav V; Siddhanta S
    Phys Chem Chem Phys; 2023 Feb; 25(8):6032-6043. PubMed ID: 36779479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions.
    Kim H; Kosuda KM; Van Duyne RP; Stair PC
    Chem Soc Rev; 2010 Dec; 39(12):4820-44. PubMed ID: 20957272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.