These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24038572)

  • 21. Effective Gas Separation Performance Enhancement Obtained by Constructing Polymorphous Core-Shell Metal-Organic Frameworks.
    He Y; Sun M; Zhao Q; Shang J; Tian Y; Xiao P; Gu Q; Li L; Webley PA
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30234-30239. PubMed ID: 31339300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvent-Dependent Adsorption-Driven Mechanism for MOFs-Based Yolk-Shell Nanostructures.
    Wang W; Xu B; Pan X; Zhang J; Liu H
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7802-7808. PubMed ID: 33404175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atypical Hybrid Metal-Organic Frameworks (MOFs): A Combinative Process for MOF-on-MOF Growth, Etching, and Structure Transformation.
    Lee S; Oh S; Oh M
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1327-1333. PubMed ID: 31674087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core-Shell Nanostructures.
    Liu K; Qiao Z; Gao C
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Monodispersed Spherical Zr-Based Metal-Organic Framework Catalyst, Pt/Au@Pd@UIO-66, Comprising an Au@Pd Core-Shell Encapsulated in a UIO-66 Center and Its Highly Selective CO
    Zheng Z; Xu H; Xu Z; Ge J
    Small; 2018 Feb; 14(5):. PubMed ID: 29205859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery.
    Ge X; Li Z; Wang C; Yin L
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26633-42. PubMed ID: 26572922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Organic Frameworks as Platforms for Functional Materials.
    Cui Y; Li B; He H; Zhou W; Chen B; Qian G
    Acc Chem Res; 2016 Mar; 49(3):483-93. PubMed ID: 26878085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives.
    Li G; Zhao S; Zhang Y; Tang Z
    Adv Mater; 2018 Dec; 30(51):e1800702. PubMed ID: 30247789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational Localization of Metal Nanoparticles in Yolk-Shell MOFs for Enhancing Catalytic Performance in Selective Hydrogenation of Cinnamaldehyde.
    Zhou A; Dou Y; Zhou J; Li JR
    ChemSusChem; 2020 Jan; 13(1):205-211. PubMed ID: 31556474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yolk-Shell Nanostars@Metal Organic Frameworks as Molecular Sieves for Optical Sensing and Catalysis.
    Zorlu T; Becerril-Castro IB; Puertolas B; Giannini V; Correa-Duarte MA; Alvarez-Puebla RA
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202305299. PubMed ID: 37186430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures.
    Gu Y; Wu YN; Li L; Chen W; Li F; Kitagawa S
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15658-15662. PubMed ID: 29048720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties.
    Xia X; Chao D; Qi X; Xiong Q; Zhang Y; Tu J; Zhang H; Fan HJ
    Nano Lett; 2013 Sep; 13(9):4562-8. PubMed ID: 23977982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging Multifunctional Metal-Organic Framework Materials.
    Li B; Wen HM; Cui Y; Zhou W; Qian G; Chen B
    Adv Mater; 2016 Oct; 28(40):8819-8860. PubMed ID: 27454668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-Pot Synthesis of MOF@MOF: Structural Incompatibility Leads to Core-Shell Structure and Adaptability Control Makes the Sequence.
    Tan H; Zhao X; Du L; Wang B; Huang Y; Gu Y; Lu Z
    Small; 2024 Jan; 20(3):e2305881. PubMed ID: 37670528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications.
    Doonan C; Riccò R; Liang K; Bradshaw D; Falcaro P
    Acc Chem Res; 2017 Jun; 50(6):1423-1432. PubMed ID: 28489346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Single-Crystalline Core-Shell Metal-Organic Frameworks.
    Park J; Ha J; Moon HR
    J Vis Exp; 2023 Feb; (192):. PubMed ID: 36847385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability.
    Ke F; Wang L; Zhu J
    Nanoscale; 2015 Jan; 7(3):1201-8. PubMed ID: 25486865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials.
    Kirchon A; Feng L; Drake HF; Joseph EA; Zhou HC
    Chem Soc Rev; 2018 Dec; 47(23):8611-8638. PubMed ID: 30234863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.