These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24038682)

  • 21. Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24.
    Treadway SL; Yanagimachi KS; Lankenau E; Lessard PA; Stephanopoulos G; Sinskey AJ
    Appl Microbiol Biotechnol; 1999 Jun; 51(6):786-93. PubMed ID: 10422226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.
    Pérez-de-Mora A; Engel M; Schloter M
    Microb Ecol; 2011 Nov; 62(4):959-72. PubMed ID: 21567188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2.
    Hara A; Baik SH; Syutsubo K; Misawa N; Smits TH; van Beilen JB; Harayama S
    Environ Microbiol; 2004 Mar; 6(3):191-7. PubMed ID: 14871203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-active lipids in rhodococci.
    Lang S; Philp JC
    Antonie Van Leeuwenhoek; 1998; 74(1-3):59-70. PubMed ID: 10068789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of membrane permeabilization by a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.
    Zaragoza A; Aranda FJ; Espuny MJ; Teruel JA; Marqués A; Manresa A; Ortiz A
    Langmuir; 2009 Jul; 25(14):7892-8. PubMed ID: 19391573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants.
    Peng F; Liu Z; Wang L; Shao Z
    J Appl Microbiol; 2007 Jun; 102(6):1603-11. PubMed ID: 17578426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers.
    Yakimov MM; Giuliano L; Bruni V; Scarfì S; Golyshin PN
    New Microbiol; 1999 Jul; 22(3):249-56. PubMed ID: 10423744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23.
    Boonmak C; Takahashi Y; Morikawa M
    Extremophiles; 2014 May; 18(3):515-23. PubMed ID: 24682607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel alkane monooxygenase (
    Wang S; Li G; Liao Z; Liu T; Ma T
    PeerJ; 2022; 10():e14147. PubMed ID: 36193440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic and stress responses of Acinetobacter oleivorans DR1 during long-chain alkane degradation.
    Park C; Shin B; Jung J; Lee Y; Park W
    Microb Biotechnol; 2017 Nov; 10(6):1809-1823. PubMed ID: 28857443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiology of biosurfactant synthesis by Rhodococcus species H13-A.
    Singer ME; Finnerty WR
    Can J Microbiol; 1990 Nov; 36(11):741-5. PubMed ID: 22049932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874.
    Throne-Holst M; Wentzel A; Ellingsen TE; Kotlar HK; Zotchev SB
    Appl Environ Microbiol; 2007 May; 73(10):3327-32. PubMed ID: 17400787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of an Aldolase Involved in Cholesterol Side Chain Degradation in Mycobacterium tuberculosis.
    Gilbert S; Hood L; Seah SYK
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29109182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition.
    Tzvetkov M; Klopprogge C; Zelder O; Liebl W
    Microbiology (Reading); 2003 Jul; 149(Pt 7):1659-1673. PubMed ID: 12855718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism.
    Poelarends GJ; Zandstra M; Bosma T; Kulakov LA; Larkin MJ; Marchesi JR; Weightman AJ; Janssen DB
    J Bacteriol; 2000 May; 182(10):2725-31. PubMed ID: 10781539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP.
    Niescher S; Wray V; Lang S; Kaschabek SR; Schlömann M
    Appl Microbiol Biotechnol; 2006 May; 70(5):605-11. PubMed ID: 16133336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7.
    Marqués AM; Pinazo A; Farfan M; Aranda FJ; Teruel JA; Ortiz A; Manresa A; Espuny MJ
    Chem Phys Lipids; 2009 Apr; 158(2):110-7. PubMed ID: 19428355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse alkane hydroxylase genes in microorganisms and environments.
    Nie Y; Chi CQ; Fang H; Liang JL; Lu SL; Lai GL; Tang YQ; Wu XL
    Sci Rep; 2014 May; 4():4968. PubMed ID: 24829093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b.
    Liang JL; JiangYang JH; Nie Y; Wu XL
    Appl Environ Microbiol; 2016 Jan; 82(2):608-19. PubMed ID: 26567302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of the alkB gene in the thermophilic Geobacillus sp. strain MH-1.
    Liu YC; Zhou TT; Zhang J; Xu L; Zhang ZH; Shen QR; Shen B
    Res Microbiol; 2009 Oct; 160(8):560-6. PubMed ID: 19733653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.