BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24038830)

  • 1. Nanoplasmonic imaging of latent fingerprints and identification of cocaine.
    Li K; Qin W; Li F; Zhao X; Jiang B; Wang K; Deng S; Fan C; Li D
    Angew Chem Int Ed Engl; 2013 Oct; 52(44):11542-5. PubMed ID: 24038830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution and Universal Visualization of Latent Fingerprints Based on Aptamer-Functionalized Core-Shell Nanoparticles with Embedded SERS Reporters.
    Zhao J; Zhang K; Li Y; Ji J; Liu B
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14389-95. PubMed ID: 27236904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide.
    Shi Y; Dai H; Sun Y; Hu J; Ni P; Li Z
    Analyst; 2013 Dec; 138(23):7152-6. PubMed ID: 23942575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly imprinted aptamers of gold nanoparticles for the enzymatic inhibition and detection of thrombin.
    Liao YJ; Shiang YC; Huang CC; Chang HT
    Langmuir; 2012 Jun; 28(24):8944-51. PubMed ID: 22300379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles.
    Golub E; Pelossof G; Freeman R; Zhang H; Willner I
    Anal Chem; 2009 Nov; 81(22):9291-8. PubMed ID: 19860374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles.
    Shiang YC; Ou CM; Chen SJ; Ou TY; Lin HJ; Huang CC; Chang HT
    Nanoscale; 2013 Apr; 5(7):2756-64. PubMed ID: 23429884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct optical detection of aptamer conformational changes induced by target molecules.
    Neumann O; Zhang D; Tam F; Lal S; Wittung-Stafshede P; Halas NJ
    Anal Chem; 2009 Dec; 81(24):10002-6. PubMed ID: 19928834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition.
    Wang J; Wei T; Li X; Zhang B; Wang J; Huang C; Yuan Q
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1616-20. PubMed ID: 24452926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine detection by using gold nanoparticles and designed aptamer sequences.
    Li F; Zhang J; Cao X; Wang L; Li D; Song S; Ye B; Fan C
    Analyst; 2009 Jul; 134(7):1355-60. PubMed ID: 19562201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles.
    Chen SJ; Huang YF; Huang CC; Lee KH; Lin ZH; Chang HT
    Biosens Bioelectron; 2008 Jun; 23(11):1749-53. PubMed ID: 18359620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer-Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay.
    Wang J; Munir A; Li Z; Zhou HS
    Biosens Bioelectron; 2009 Sep; 25(1):124-9. PubMed ID: 19592231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads.
    Ma C; Wang W; Yang Q; Shi C; Cao L
    Biosens Bioelectron; 2011 Mar; 26(7):3309-12. PubMed ID: 21277763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures.
    Zhang J; Wang L; Pan D; Song S; Boey FY; Zhang H; Fan C
    Small; 2008 Aug; 4(8):1196-200. PubMed ID: 18651718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer: applications for biosensing and logic gate operations.
    Elbaz J; Shlyahovsky B; Li D; Willner I
    Chembiochem; 2008 Jan; 9(2):232-9. PubMed ID: 18161727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using self-assembled aptamers and fibrinogen-conjugated gold nanoparticles to detect DNA based on controlled thrombin activity.
    Chen CK; Shiang YC; Huang CC; Chang HT
    Biosens Bioelectron; 2011 Apr; 26(8):3464-8. PubMed ID: 21324664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles.
    Liu Q; Jing C; Zheng X; Gu Z; Li D; Li DW; Huang Q; Long YT; Fan C
    Chem Commun (Camb); 2012 Oct; 48(77):9574-6. PubMed ID: 22871726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles and imaging mass spectrometry: double imaging of latent fingerprints.
    Tang HW; Lu W; Che CM; Ng KM
    Anal Chem; 2010 Mar; 82(5):1589-93. PubMed ID: 20128591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues.
    Peng T; Qin W; Wang K; Shi J; Fan C; Li D
    Anal Chem; 2015 Sep; 87(18):9403-7. PubMed ID: 26292147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ growth of gold nanoparticles on latent fingerprints-from forensic applications to inkjet printed nanoparticle patterns.
    Hussain I; Hussain SZ; Habib-ur-Rehman ; Ihsan A; Rehman A; Khalid ZM; Brust M; Cooper AI
    Nanoscale; 2010 Dec; 2(12):2575-8. PubMed ID: 20959933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoacoustic and Colorimetric Visualization of Latent Fingerprints.
    Song K; Huang P; Yi C; Ning B; Hu S; Nie L; Chen X; Nie Z
    ACS Nano; 2015 Dec; 9(12):12344-8. PubMed ID: 26528550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.