These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 24038930)
1. Temperatures and the growth and development of maize and rice: a review. Sánchez B; Rasmussen A; Porter JR Glob Chang Biol; 2014 Feb; 20(2):408-17. PubMed ID: 24038930 [TBL] [Abstract][Full Text] [Related]
2. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894 [TBL] [Abstract][Full Text] [Related]
3. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008. Zhang T; Huang Y J Sci Food Agric; 2012 Jun; 92(8):1643-52. PubMed ID: 22190019 [TBL] [Abstract][Full Text] [Related]
4. Projective analysis of staple food crop productivity in adaptation to future climate change in China. Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124 [TBL] [Abstract][Full Text] [Related]
5. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing. Duncan JM; Dash J; Atkinson PM Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864 [TBL] [Abstract][Full Text] [Related]
6. Climate trends and global crop production since 1980. Lobell DB; Schlenker W; Costa-Roberts J Science; 2011 Jul; 333(6042):616-20. PubMed ID: 21551030 [TBL] [Abstract][Full Text] [Related]
7. Characterizing drought stress and trait influence on maize yield under current and future conditions. Harrison MT; Tardieu F; Dong Z; Messina CD; Hammer GL Glob Chang Biol; 2014 Mar; 20(3):867-78. PubMed ID: 24038882 [TBL] [Abstract][Full Text] [Related]
8. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. Mishra A; Singh R; Raghuwanshi NS; Chatterjee C; Froebrich J Sci Total Environ; 2013 Dec; 468-469 Suppl():S132-8. PubMed ID: 23800620 [TBL] [Abstract][Full Text] [Related]
9. Responses of plant biomass and yield component in rice, wheat, and maize to climatic warming: a meta-analysis. Liu X; Ma Q; Yu H; Li Y; Zhou L; He Q; Xu Z; Zhou G Planta; 2020 Oct; 252(5):90. PubMed ID: 33083898 [TBL] [Abstract][Full Text] [Related]
10. Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan. Ahmed I; Ur Rahman MH; Ahmed S; Hussain J; Ullah A; Judge J Environ Sci Pollut Res Int; 2018 Oct; 25(28):28413-28430. PubMed ID: 30083905 [TBL] [Abstract][Full Text] [Related]
11. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite. Tao F; Zhang Z; Shi W; Liu Y; Xiao D; Zhang S; Zhu Z; Wang M; Liu F Glob Chang Biol; 2013 Oct; 19(10):3200-9. PubMed ID: 23661287 [TBL] [Abstract][Full Text] [Related]
12. Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae); simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters. Khadioli N; Tonnang ZE; Muchugu E; Ong'amo G; Achia T; Kipchirchir I; Kroschel J; Le Ru B Bull Entomol Res; 2014 Dec; 104(6):809-22. PubMed ID: 25229840 [TBL] [Abstract][Full Text] [Related]
13. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Elsgaard L; Børgesen CD; Olesen JE; Siebert S; Ewert F; Peltonen-Sainio P; Rötter RP; Skjelvåg AO Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1514-26. PubMed ID: 22827234 [TBL] [Abstract][Full Text] [Related]
14. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Zhang T; Huang Y; Yang X Glob Chang Biol; 2013 Feb; 19(2):563-70. PubMed ID: 23504793 [TBL] [Abstract][Full Text] [Related]
15. Future climate impacts on maize farming and food security in Malawi. Stevens T; Madani K Sci Rep; 2016 Nov; 6():36241. PubMed ID: 27824092 [TBL] [Abstract][Full Text] [Related]
16. How do various maize crop models vary in their responses to climate change factors? Bassu S; Brisson N; Durand JL; Boote K; Lizaso J; Jones JW; Rosenzweig C; Ruane AC; Adam M; Baron C; Basso B; Biernath C; Boogaard H; Conijn S; Corbeels M; Deryng D; De Sanctis G; Gayler S; Grassini P; Hatfield J; Hoek S; Izaurralde C; Jongschaap R; Kemanian AR; Kersebaum KC; Kim SH; Kumar NS; Makowski D; Müller C; Nendel C; Priesack E; Pravia MV; Sau F; Shcherbak I; Tao F; Teixeira E; Timlin D; Waha K Glob Chang Biol; 2014 Jul; 20(7):2301-20. PubMed ID: 24395589 [TBL] [Abstract][Full Text] [Related]
17. Crop growth and development effects on surface albedo for maize and cowpea fields in Ghana, West Africa. Oguntunde PG; van de Giesen N Int J Biometeorol; 2004 Nov; 49(2):106-12. PubMed ID: 15278686 [TBL] [Abstract][Full Text] [Related]
18. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Liu Z; Hubbard KG; Lin X; Yang X Glob Chang Biol; 2013 Nov; 19(11):3481-92. PubMed ID: 23857749 [TBL] [Abstract][Full Text] [Related]
19. Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes. Parent B; Turc O; Gibon Y; Stitt M; Tardieu F J Exp Bot; 2010 May; 61(8):2057-69. PubMed ID: 20194927 [TBL] [Abstract][Full Text] [Related]
20. Climate change and the flowering time of annual crops. Craufurd PQ; Wheeler TR J Exp Bot; 2009; 60(9):2529-39. PubMed ID: 19505929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]