These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24038933)

  • 1. Distinct mechanisms of DNA sensing based on N-doped carbon nanotubes with enhanced conductance and chemical selectivity.
    Kim HS; Lee SJ; Kim YH
    Small; 2014 Feb; 10(4):774-81. PubMed ID: 24038933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of the transverse conductance in DNA nucleotides.
    Meunier V; Krstić PS
    J Chem Phys; 2008 Jan; 128(4):041103. PubMed ID: 18247922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the electrical conductivity of carbon nanotube networks: a first-principles study.
    Li EY; Marzari N
    ACS Nano; 2011 Dec; 5(12):9726-36. PubMed ID: 22059779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Carbon nanotube-based biosensors for DNA structure characterization].
    Abdullin TI; Bondar' OV; Rizvanov AA; Nikitina II
    Prikl Biokhim Mikrobiol; 2009; 45(2):252-6. PubMed ID: 19382717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.
    Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M
    ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA biosensor based on chitosan film doped with carbon nanotubes.
    Li J; Liu Q; Liu Y; Liu S; Yao S
    Anal Biochem; 2005 Nov; 346(1):107-14. PubMed ID: 16169507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes.
    Lee SU; Belosludov RV; Mizuseki H; Kawazoe Y
    Small; 2009 Aug; 5(15):1769-75. PubMed ID: 19360721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing.
    Xu X; Jiang S; Hu Z; Liu S
    ACS Nano; 2010 Jul; 4(7):4292-8. PubMed ID: 20565121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen Doping of Carbon Nanoelectrodes for Enhanced Control of DNA Translocation Dynamics.
    Jung SW; Kim HS; Cho AE; Kim YH
    ACS Appl Mater Interfaces; 2018 May; 10(21):18227-18236. PubMed ID: 29741080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel tungsten phosphide embedded nitrogen-doped carbon nanotubes: A portable and renewable monitoring platform for anticancer drug in whole blood.
    Zhou H; Ran G; Masson JF; Wang C; Zhao Y; Song Q
    Biosens Bioelectron; 2018 May; 105():226-235. PubMed ID: 29412947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen doped chiral carbonaceous nanotube for ultrasensitive DNA direct electrochemistry, DNA hybridization and damage study.
    Cui M; Zhao Q; Zhang Q; Fu M; Liu Y; Fan X; Wang H; Zhang Y; Wang H
    Anal Chim Acta; 2018 Dec; 1038():41-51. PubMed ID: 30278906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA sensing by field-effect transistors based on networks of carbon nanotubes.
    Gui EL; Li LJ; Zhang K; Xu Y; Dong X; Ho X; Lee PS; Kasim J; Shen ZX; Rogers JA; Mhaisalkar SG
    J Am Chem Soc; 2007 Nov; 129(46):14427-32. PubMed ID: 17973383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of surface adsorption on the interfacial electron transfer of flavin adenine dinucleotide and glucose oxidase at carbon nanotube and nitrogen-doped carbon nanotube electrodes.
    Goran JM; Mantilla SM; Stevenson KJ
    Anal Chem; 2013 Feb; 85(3):1571-81. PubMed ID: 23289639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube nanoweb-bioelectrode for highly selective dopamine sensing.
    Zhao J; Zhang W; Sherrell P; Razal JM; Huang XF; Minett AI; Chen J
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):44-8. PubMed ID: 22148519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors.
    Kurkina T; Vlandas A; Ahmad A; Kern K; Balasubramanian K
    Angew Chem Int Ed Engl; 2011 Apr; 50(16):3710-4. PubMed ID: 21425218
    [No Abstract]   [Full Text] [Related]  

  • 16. Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection.
    Cruz-Silva E; Lopez-Urias F; Munoz-Sandoval E; Sumpter BG; Terrones H; Charlier JC; Meunier V; Terrones M
    Nanoscale; 2011 Mar; 3(3):1008-13. PubMed ID: 21152534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transport characteristics of one-dimensional heterojunctions with multi-nitrogen-doped capped carbon nanotubes.
    Lee SU; Mizuseki H; Kawazoe Y
    Nanoscale; 2010 Dec; 2(12):2758-64. PubMed ID: 20877895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization.
    Wang J; Kawde AN; Jan MR
    Biosens Bioelectron; 2004 Nov; 20(5):995-1000. PubMed ID: 15530796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: Carbon nanotube based electrochemical sensors for biomolecules.
    Jacobs CB; Peairs MJ; Venton BJ
    Anal Chim Acta; 2010 Mar; 662(2):105-27. PubMed ID: 20171310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of a carbon nanotube-based DNA nanosensor.
    Kalantari-Nejad R; Bahrami M; Rafii-Tabar H; Rungger I; Sanvito S
    Nanotechnology; 2010 Nov; 21(44):445501. PubMed ID: 20935354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.