BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24039061)

  • 21. Facile synthesis of Pd-Ir bimetallic octapods and nanocages through galvanic replacement and co-reduction, and their use for hydrazine decomposition.
    Liu M; Zheng Y; Xie S; Li N; Lu N; Wang J; Kim MJ; Guo L; Xia Y
    Phys Chem Chem Phys; 2013 Jul; 15(28):11822-9. PubMed ID: 23760572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Au-Pd core-shell nanoparticles as alcohol oxidation catalysts: effect of shape and composition.
    Cheong S; Graham L; Brett GL; Henning AM; Watt J; Miedziak PJ; Song M; Takeda Y; Taylor SH; Tilley RD
    ChemSusChem; 2013 Oct; 6(10):1858-62. PubMed ID: 24006241
    [No Abstract]   [Full Text] [Related]  

  • 23. Electrocatalytic activity of nanoporous Pd and Pt: effect of structural features.
    Shim JH; Kim YS; Kang M; Lee C; Lee Y
    Phys Chem Chem Phys; 2012 Mar; 14(11):3974-9. PubMed ID: 22322646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.
    Astruc D; Lu F; Aranzaes JR
    Angew Chem Int Ed Engl; 2005 Dec; 44(48):7852-72. PubMed ID: 16304662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold.
    Zhang J; Ma H; Zhang D; Liu P; Tian F; Ding Y
    Phys Chem Chem Phys; 2008 Jun; 10(22):3250-5. PubMed ID: 18500402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The growth and enhanced catalytic performance of Au@Pd core-shell nanodendrites.
    Wang H; Sun Z; Yang Y; Su D
    Nanoscale; 2013 Jan; 5(1):139-42. PubMed ID: 23149579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The CO oxidation mechanism and reactivity on PdZn alloys.
    Johnson RS; DeLaRiva A; Ashbacher V; Halevi B; Villanueva CJ; Smith GK; Lin S; Datye AK; Guo H
    Phys Chem Chem Phys; 2013 May; 15(20):7768-76. PubMed ID: 23598906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crown jewel-structured Au/Pd nanoclusters as novel catalysts for aerobic glucose oxidation.
    Zhang H; Toshima N
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5405-12. PubMed ID: 23882770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic structure of Au-Pd bimetallic alloyed nanoparticles.
    Ding Y; Fan F; Tian Z; Wang ZL
    J Am Chem Soc; 2010 Sep; 132(35):12480-6. PubMed ID: 20712315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid.
    Liu J; Cao L; Huang W; Li Z
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3552-8. PubMed ID: 21838240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis.
    Lopez-Sanchez JA; Dimitratos N; Miedziak P; Ntainjua E; Edwards JK; Morgan D; Carley AF; Tiruvalam R; Kiely CJ; Hutchings GJ
    Phys Chem Chem Phys; 2008 Apr; 10(14):1921-30. PubMed ID: 18368185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the origin of in situ generated nanoparticles as sustainable oxidation catalysts.
    Hinde CS; Van Aswegen S; Collins G; Holmes JD; Hor TS; Raja R
    Dalton Trans; 2013 Sep; 42(35):12600-5. PubMed ID: 23698390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-Heterocyclic Carbene-Modified Au-Pd Alloy Nanoparticles and Their Application as Biomimetic and Heterogeneous Catalysts.
    Tegeder P; Freitag M; Chepiga KM; Muratsugu S; Möller N; Lamping S; Tada M; Glorius F; Ravoo BJ
    Chemistry; 2018 Dec; 24(70):18682-18688. PubMed ID: 30246891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW
    ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective Oxidation of 1,6-Hexanediol to 6-Hydroxycaproic Acid over Reusable Hydrotalcite-Supported Au-Pd Bimetallic Catalysts.
    Tuteja J; Nishimura S; Choudhary H; Ebitani K
    ChemSusChem; 2015 Jun; 8(11):1862-6. PubMed ID: 25990616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seed-mediated co-reduction: a versatile route to architecturally controlled bimetallic nanostructures.
    DeSantis CJ; Sue AC; Bower MM; Skrabalak SE
    ACS Nano; 2012 Mar; 6(3):2617-28. PubMed ID: 22369230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.
    Metin Ö; Sun X; Sun S
    Nanoscale; 2013 Feb; 5(3):910-2. PubMed ID: 23254519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intermetallic NaAu2 as a heterogeneous catalyst for low-temperature CO oxidation.
    Xiao C; Wang LL; Maligal-Ganesh RV; Smetana V; Walen H; Thiel PA; Miller GJ; Johnson DD; Huang W
    J Am Chem Soc; 2013 Jul; 135(26):9592-5. PubMed ID: 23758405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold-platinum bimetallic clusters for aerobic oxidation of alcohols under ambient conditions.
    Miyamura H; Matsubara R; Kobayashi S
    Chem Commun (Camb); 2008 May; (17):2031-3. PubMed ID: 18536811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymer-incarcerated gold-palladium nanoclusters with boron on carbon: a mild and efficient catalyst for the sequential aerobic oxidation-Michael addition of 1,3-dicarbonyl compounds to allylic alcohols.
    Yoo WJ; Miyamura H; Kobayashi S
    J Am Chem Soc; 2011 Mar; 133(9):3095-103. PubMed ID: 21302929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.