These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Catalytic Anti-Markovnikov Transformations of Hindered Terminal Alkenes Enabled by Aldehyde-Selective Wacker-Type Oxidation. Kim KE; Li J; Grubbs RH; Stoltz BM J Am Chem Soc; 2016 Oct; 138(40):13179-13182. PubMed ID: 27670712 [TBL] [Abstract][Full Text] [Related]
4. Realization of Anti-Markovnikov Selectivity in Pd-Catalyzed Oxidative Acetalization and Wacker-Type Oxidation of Terminal Alkenes. Ura Y Chem Rec; 2021 Dec; 21(12):3458-3469. PubMed ID: 34021681 [TBL] [Abstract][Full Text] [Related]
5. Palladium-catalyzed anti-Markovnikov oxidation of terminal alkenes. Dong JJ; Browne WR; Feringa BL Angew Chem Int Ed Engl; 2015 Jan; 54(3):734-44. PubMed ID: 25367376 [TBL] [Abstract][Full Text] [Related]
6. Wacker Oxidation of Methylenecyclobutanes: Scope and Selectivity in an Unusual Setting. Sietmann J; Tenberge M; Wahl JM Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202215381. PubMed ID: 36416612 [TBL] [Abstract][Full Text] [Related]
7. Palladium-Catalyzed Aerobic Anti-Markovnikov Oxidation of Aliphatic Alkenes to Terminal Acetals. Komori S; Yamaguchi Y; Kataoka Y; Ura Y J Org Chem; 2019 Mar; 84(6):3093-3099. PubMed ID: 30663313 [TBL] [Abstract][Full Text] [Related]
9. Novel anti-Markovnikov regioselectivity in the Wacker reaction of styrenes. Wright JA; Gaunt MJ; Spencer JB Chemistry; 2006 Jan; 12(3):949-55. PubMed ID: 16144020 [TBL] [Abstract][Full Text] [Related]
10. The scope and mechanism of palladium-catalysed Markovnikov alkoxycarbonylation of alkenes. Li H; Dong K; Jiao H; Neumann H; Jackstell R; Beller M Nat Chem; 2016 Dec; 8(12):1159-1166. PubMed ID: 27874861 [TBL] [Abstract][Full Text] [Related]
11. Sustainable Wacker-Type Oxidations. Rajeshwaran P; Trouvé J; Youssef K; Gramage-Doria R Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202211016. PubMed ID: 36164675 [TBL] [Abstract][Full Text] [Related]
12. Water-Soluble Pd Nanoparticles for the Anti-Markovnikov Oxidation of Allyl Benzene in Water. Avila E; Nixarlidis C; Shon YS Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678101 [TBL] [Abstract][Full Text] [Related]
13. Zeolite-Encaged Isolated Palladium Redox Centers toward Sustainable Wacker-Type Oxidations. Li W; Deng X; Ma Y; Qin B; Dang J; Wu G; Yang S; Li L J Am Chem Soc; 2024 Oct; 146(40):27600-27609. PubMed ID: 39324993 [TBL] [Abstract][Full Text] [Related]
14. Aldehyde selective Wacker oxidations of phthalimide protected allylic amines: a new catalytic route to beta3-amino acids. Weiner B; Baeza A; Jerphagnon T; Feringa BL J Am Chem Soc; 2009 Jul; 131(27):9473-4. PubMed ID: 19583430 [TBL] [Abstract][Full Text] [Related]
15. Maleimide-assisted anti-Markovnikov Wacker-type oxidation of vinylarenes using molecular oxygen as a terminal oxidant. Nakaoka S; Murakami Y; Kataoka Y; Ura Y Chem Commun (Camb); 2016 Jan; 52(2):335-8. PubMed ID: 26514316 [TBL] [Abstract][Full Text] [Related]
16. Palladium/Iron-Catalyzed Wacker-Type Oxidation of Aliphatic Terminal and Internal Alkenes Using O Miyazaki M; Ura Y ACS Omega; 2023 Nov; 8(44):41983-41990. PubMed ID: 37969998 [TBL] [Abstract][Full Text] [Related]
17. Palladium-catalyzed aerobic oxidative amination of alkenes: development of intra- and intermolecular aza-Wacker reactions. Kotov V; Scarborough CC; Stahl SS Inorg Chem; 2007 Mar; 46(6):1910-23. PubMed ID: 17348722 [TBL] [Abstract][Full Text] [Related]
18. Phenanthroline decorated by a crown ether as a module for metallorganic-polyoxometalate hybrid catalysts: the Wacker type oxidation of alkenes with nitrous oxide as terminal oxidant. Ettedgui J; Neumann R J Am Chem Soc; 2009 Jan; 131(1):4-5. PubMed ID: 19128167 [TBL] [Abstract][Full Text] [Related]
19. Markovnikov-Selective Cobalt-Catalyzed Wacker-Type Oxidation of Styrenes into Ketones under Ambient Conditions Enabled by Hydrogen Bonding. Abuhafez N; Ehlers AW; de Bruin B; Gramage-Doria R Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202316825. PubMed ID: 38037901 [TBL] [Abstract][Full Text] [Related]
20. Terminal and internal olefin epoxidation with cobalt(II) as the catalyst: evidence for an active oxidant Co(II)-acylperoxo species. Hyun MY; Kim SH; Song YJ; Lee HG; Jo YD; Kim JH; Hwang IH; Noh JY; Kang J; Kim C J Org Chem; 2012 Sep; 77(17):7307-12. PubMed ID: 22889014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]