These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 24039322)
1. A random effects epidemic-type aftershock sequence model. Lin FC Comput Stat Data Anal; 2011 Apr; 55(1):1610-1616. PubMed ID: 24039322 [TBL] [Abstract][Full Text] [Related]
2. Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models. Helmstetter A; Sornette D Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061104. PubMed ID: 12513267 [TBL] [Abstract][Full Text] [Related]
3. Spatio-temporal characterization of earthquake sequence parameters and forecasting of strong aftershocks in Xinjiang based on the ETAS model. Li K; Wang M; Zhang H; Hu X PLoS One; 2024; 19(5):e0301975. PubMed ID: 38753654 [TBL] [Abstract][Full Text] [Related]
4. Adapting a Physical Earthquake-Aftershock Model to Simulate the Spread of COVID-19. Gunatilake T; Miller SA Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554410 [TBL] [Abstract][Full Text] [Related]
5. Viscoelastic Slider Blocks as a Model for a Seismogenic Fault. Motuzas CA; Shcherbakov R Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895540 [TBL] [Abstract][Full Text] [Related]
6. Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models. Ebrahimian H; Jalayer F Sci Rep; 2017 Aug; 7(1):9803. PubMed ID: 28852081 [TBL] [Abstract][Full Text] [Related]
7. Possible origin of memory in earthquakes: Real catalogs and an epidemic-type aftershock sequence model. Fan J; Zhou D; Shekhtman LM; Shapira A; Hofstetter R; Marzocchi W; Ashkenazy Y; Havlin S Phys Rev E; 2019 Apr; 99(4-1):042210. PubMed ID: 31108655 [TBL] [Abstract][Full Text] [Related]
8. Improvements to seismicity forecasting based on a Bayesian spatio-temporal ETAS model. Ebrahimian H; Jalayer F; Maleki Asayesh B; Hainzl S; Zafarani H Sci Rep; 2022 Dec; 12(1):20970. PubMed ID: 36470889 [TBL] [Abstract][Full Text] [Related]
9. Anomalous power law distribution of total lifetimes of branching processes: application to earthquake aftershock sequences. Saichev A; Sornette D Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046123. PubMed ID: 15600476 [TBL] [Abstract][Full Text] [Related]
10. Stability of earthquake clustering models: criticality and branching ratios. Zhuang J; Werner MJ; Harte DS Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062109. PubMed ID: 24483388 [TBL] [Abstract][Full Text] [Related]
12. The Relevance of Foreshocks in Earthquake Triggering: A Statistical Study. Lippiello E; Godano C; de Arcangelis L Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266889 [TBL] [Abstract][Full Text] [Related]
13. Estimation of the parameters of ETAS models by Simulated Annealing. Lombardi AM Sci Rep; 2015 Feb; 5():8417. PubMed ID: 25673036 [TBL] [Abstract][Full Text] [Related]
14. Magnitude-dependent epidemic-type aftershock sequences model for earthquakes. Spassiani I; Sebastiani G Phys Rev E; 2016 Apr; 93():042134. PubMed ID: 27176281 [TBL] [Abstract][Full Text] [Related]
15. Distribution of the largest aftershocks in branching models of triggered seismicity: theory of the universal Båth law. Saichev A; Sornette D Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056127. PubMed ID: 16089622 [TBL] [Abstract][Full Text] [Related]
16. The epistemic and aleatory uncertainties of the ETAS-type models: an application to the Central Italy seismicity. Lombardi AM Sci Rep; 2017 Sep; 7(1):11812. PubMed ID: 28924175 [TBL] [Abstract][Full Text] [Related]
17. Implications of an inverse branching aftershock sequence model. Turcotte DL; Abaimov SG; Dobson I; Rundle JB Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016101. PubMed ID: 19257101 [TBL] [Abstract][Full Text] [Related]
18. Scaling behavior of the earthquake intertime distribution: influence of large shocks and time scales in the Omori law. Lippiello E; Corral A; Bottiglieri M; Godano C; de Arcangelis L Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066119. PubMed ID: 23368016 [TBL] [Abstract][Full Text] [Related]
19. Avalanche Behavior in Creep Failure of Disordered Materials. Castellanos DF; Zaiser M Phys Rev Lett; 2018 Sep; 121(12):125501. PubMed ID: 30296108 [TBL] [Abstract][Full Text] [Related]
20. Distribution of the largest event in the critical epidemic-type aftershock-sequence model. Vere-Jones D; Zhuang J Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):047102. PubMed ID: 18999569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]