BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24039561)

  • 1. Detecting and removing inconsistencies between experimental data and signaling network topologies using integer linear programming on interaction graphs.
    Melas IN; Samaga R; Alexopoulos LG; Klamt S
    PLoS Comput Biol; 2013; 9(9):e1003204. PubMed ID: 24039561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network reconstruction based on proteomic data and prior knowledge of protein connectivity using graph theory.
    Stavrakas V; Melas IN; Sakellaropoulos T; Alexopoulos LG
    PLoS One; 2015; 10(5):e0128411. PubMed ID: 26020784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks.
    Kirouac DC; Saez-Rodriguez J; Swantek J; Burke JM; Lauffenburger DA; Sorger PK
    BMC Syst Biol; 2012 May; 6():29. PubMed ID: 22548703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended notions of sign consistency to relate experimental data to signaling and regulatory network topologies.
    Thiele S; Cerone L; Saez-Rodriguez J; Siegel A; GuzioĊ‚owski C; Klamt S
    BMC Bioinformatics; 2015 Oct; 16():345. PubMed ID: 26510976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data.
    Samaga R; Saez-Rodriguez J; Alexopoulos LG; Sorger PK; Klamt S
    PLoS Comput Biol; 2009 Aug; 5(8):e1000438. PubMed ID: 19662154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data.
    Mitsos A; Melas IN; Siminelakis P; Chairakaki AD; Saez-Rodriguez J; Alexopoulos LG
    PLoS Comput Biol; 2009 Dec; 5(12):e1000591. PubMed ID: 19997482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal Network Topologies for Signal Processing during Collective Cell Chemotaxis.
    Yue H; Camley BA; Rappel WJ
    Biophys J; 2018 Jun; 114(12):2986-2999. PubMed ID: 29925034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning feedback molecular network models using integer linear programming.
    Ozen M; Emamian ES; Abdi A
    Phys Biol; 2022 Oct; 19(6):. PubMed ID: 36103868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering signal transduction networks from high-throughput data by integer linear programming.
    Zhao XM; Wang RS; Chen L; Aihara K
    Nucleic Acids Res; 2008 May; 36(9):e48. PubMed ID: 18411207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data.
    Miannay B; Minvielle S; Magrangeas F; Guziolowski C
    BMC Syst Biol; 2018 Mar; 12(Suppl 3):32. PubMed ID: 29589566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of large-scale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evaluation.
    Pinna A; Heise S; Flassig RJ; de la Fuente A; Klamt S
    BMC Syst Biol; 2013 Aug; 7():73. PubMed ID: 23924435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
    Pagadrai S; Yilmaz M; Valluri P
    IEEE Trans Neural Netw Learn Syst; 2016 Aug; 27(8):1787-92. PubMed ID: 25935050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian inference of hub nodes across multiple networks.
    Kim J; Do KA; Ha MJ; Peterson CB
    Biometrics; 2019 Mar; 75(1):172-182. PubMed ID: 30051914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boolean factor graph model for biological systems: the yeast cell-cycle network.
    Kotiang S; Eslami A
    BMC Bioinformatics; 2021 Sep; 22(1):442. PubMed ID: 34535069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.
    Mitsos A; Melas IN; Morris MK; Saez-Rodriguez J; Lauffenburger DA; Alexopoulos LG
    PLoS One; 2012; 7(11):e50085. PubMed ID: 23226239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks.
    Samaga R; Klamt S
    Cell Commun Signal; 2013 Jun; 11(1):43. PubMed ID: 23803171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of cellular signal transduction networks using perturbation assays and linear programming.
    Knapp B; Kaderali L
    PLoS One; 2013; 8(7):e69220. PubMed ID: 23935958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integer optimization algorithm for robust identification of non-linear gene regulatory networks.
    Chemmangattuvalappil N; Task K; Banerjee I
    BMC Syst Biol; 2012 Sep; 6():119. PubMed ID: 22937832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological network comparison using graphlet degree distribution.
    Przulj N
    Bioinformatics; 2007 Jan; 23(2):e177-83. PubMed ID: 17237089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity problems on heterogeneous graphs.
    Wu J; Khodaverdian A; Weitz B; Yosef N
    Algorithms Mol Biol; 2019; 14():5. PubMed ID: 30899321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.