These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24039717)

  • 1. Phytoplankton cell size reduction in response to warming mediated by nutrient limitation.
    Peter KH; Sommer U
    PLoS One; 2013; 8(9):e71528. PubMed ID: 24039717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do marine phytoplankton follow Bergmann's rule sensu lato?
    Sommer U; Peter KH; Genitsaris S; Moustaka-Gouni M
    Biol Rev Camb Philos Soc; 2017 May; 92(2):1011-1026. PubMed ID: 27028628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoplankton cell size: intra- and interspecific effects of warming and grazing.
    Peter KH; Sommer U
    PLoS One; 2012; 7(11):e49632. PubMed ID: 23226215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels.
    Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD
    Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nutrient supply on cell size evolution of marine phytoplankton.
    Liu L; Fan M; Kang Y
    Math Biosci Eng; 2023 Jan; 20(3):4714-4740. PubMed ID: 36896519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen deposition and warming - effects on phytoplankton nutrient limitation in subarctic lakes.
    Bergström AK; Faithfull C; Karlsson D; Karlsson J
    Glob Chang Biol; 2013 Aug; 19(8):2557-68. PubMed ID: 23629960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size.
    Schulhof MA; Shurin JB; Declerck SAJ; Van de Waal DB
    Glob Chang Biol; 2019 Aug; 25(8):2751-2762. PubMed ID: 31004556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size.
    Peter KH; Sommer U
    Ecol Evol; 2015 Mar; 5(5):1011-24. PubMed ID: 25798219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interacting Temperature, Nutrients and Zooplankton Grazing Control Phytoplankton Size-Abundance Relationships in Eight Swiss Lakes.
    Pomati F; Shurin JB; Andersen KH; Tellenbach C; Barton AD
    Front Microbiol; 2019; 10():3155. PubMed ID: 32038586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics.
    Domis LN; Van de Waal DB; Helmsing NR; Van Donk E; Mooij WM
    Ecology; 2014 Jun; 95(6):1485-95. PubMed ID: 25039214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warming and oligotrophication cause shifts in freshwater phytoplankton communities.
    Verbeek L; Gall A; Hillebrand H; Striebel M
    Glob Chang Biol; 2018 Oct; 24(10):4532-4543. PubMed ID: 29856108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sea surface warming on marine plankton.
    Lewandowska AM; Boyce DG; Hofmann M; Matthiessen B; Sommer U; Worm B
    Ecol Lett; 2014 May; 17(5):614-23. PubMed ID: 24575918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates.
    Marañón E; Lorenzo MP; Cermeño P; Mouriño-Carballido B
    ISME J; 2018 Jun; 12(7):1836-1845. PubMed ID: 29695860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meta-analysis of the response of marine phytoplankton to nutrient addition and seawater warming.
    Wu X; Liu H; Ru Z; Tu G; Xing L; Ding Y
    Mar Environ Res; 2021 Jun; 168():105294. PubMed ID: 33770674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of warming and eutrophication on coastal phytoplankton production.
    Lee KH; Jeong HJ; Lee K; Franks PJS; Seong KA; Lee SY; Lee MJ; Hyeon Jang S; Potvin E; Suk Lim A; Yoon EY; Yoo YD; Kang NS; Kim KY
    Harmful Algae; 2019 Jan; 81():106-118. PubMed ID: 30638494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Title: Freshwater phytoplankton responses to global warming.
    Wagner H; Fanesi A; Wilhelm C
    J Plant Physiol; 2016 Sep; 203():127-134. PubMed ID: 27344409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic traits predict the effects of warming on phytoplankton competition.
    Bestion E; García-Carreras B; Schaum CE; Pawar S; Yvon-Durocher G
    Ecol Lett; 2018 May; 21(5):655-664. PubMed ID: 29575658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the drivers of the temperature-size covariance using artificial selection.
    Malerba ME; Marshall DJ
    Evolution; 2020 Jan; 74(1):169-178. PubMed ID: 31815291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light and nutrient availability affect the size-scaling of growth in phytoplankton.
    Mei ZP; Finkel ZV; Irwin AJ
    J Theor Biol; 2009 Aug; 259(3):582-8. PubMed ID: 19409906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.