These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24039717)

  • 21. Testing the drivers of the temperature-size covariance using artificial selection.
    Malerba ME; Marshall DJ
    Evolution; 2020 Jan; 74(1):169-178. PubMed ID: 31815291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light and nutrient availability affect the size-scaling of growth in phytoplankton.
    Mei ZP; Finkel ZV; Irwin AJ
    J Theor Biol; 2009 Aug; 259(3):582-8. PubMed ID: 19409906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean.
    Acevedo-Trejos E; Brandt G; Bruggeman J; Merico A
    Sci Rep; 2015 Mar; 5():8918. PubMed ID: 25747280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amplified Arctic warming by phytoplankton under greenhouse warming.
    Park JY; Kug JS; Bader J; Rolph R; Kwon M
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5921-6. PubMed ID: 25902494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A metabolic perspective on competition and body size reductions with warming.
    Reuman DC; Holt RD; Yvon-Durocher G
    J Anim Ecol; 2014 Jan; 83(1):59-69. PubMed ID: 23521010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming.
    Tatters AO; Roleda MY; Schnetzer A; Fu F; Hurd CL; Boyd PW; Caron DA; Lie AA; Hoffmann LJ; Hutchins DA
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20120437. PubMed ID: 23980240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global warming and oligotrophication lead to increased lipid production in marine phytoplankton.
    Novak T; Godrijan J; Pfannkuchen DM; Djakovac T; Medić N; Ivančić I; Mlakar M; Gašparović B
    Sci Total Environ; 2019 Jun; 668():171-183. PubMed ID: 30852195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean.
    Van de Waal DB; Litchman E
    Philos Trans R Soc Lond B Biol Sci; 2020 May; 375(1798):20190706. PubMed ID: 32200734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change.
    Svensson F; Norberg J; Snoeijs P
    PLoS One; 2014; 9(10):e109993. PubMed ID: 25279720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disentangling the direct and indirect effects of agricultural runoff on freshwater ecosystems subject to global warming: A microcosm study.
    Allen J; Gross EM; Courcoul C; Bouletreau S; Compin A; Elger A; Ferriol J; Hilt S; Jassey VEJ; Laviale M; Polst BH; Schmitt-Jansen M; Stibor H; Vijayaraj V; Leflaive J
    Water Res; 2021 Feb; 190():116713. PubMed ID: 33302039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment.
    Richardson J; Feuchtmayr H; Miller C; Hunter PD; Maberly SC; Carvalho L
    Glob Chang Biol; 2019 Oct; 25(10):3365-3380. PubMed ID: 31095834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom.
    Menden-Deuer S; Lawrence C; Franzè G
    PeerJ; 2018; 6():e5264. PubMed ID: 30057859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rising levels of temperature and CO
    Zhang Y; Wang T; Li H; Bao N; Hall-Spencer JM; Gao K
    Mar Environ Res; 2018 Oct; 141():159-166. PubMed ID: 30180993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO
    Seifert M; Rost B; Trimborn S; Hauck J
    Glob Chang Biol; 2020 Dec; 26(12):6787-6804. PubMed ID: 32905664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Warming will affect phytoplankton differently: evidence through a mechanistic approach.
    Huertas IE; Rouco M; López-Rodas V; Costas E
    Proc Biol Sci; 2011 Dec; 278(1724):3534-43. PubMed ID: 21508031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functioning of a shallow-water sediment system during experimental warming and nutrient enrichment.
    Alsterberg C; Sundbäck K; Hulth S
    PLoS One; 2012; 7(12):e51503. PubMed ID: 23240032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.
    Hixson SM; Arts MT
    Glob Chang Biol; 2016 Aug; 22(8):2744-55. PubMed ID: 27070119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes.
    Skau LF; Andersen T; Thrane JE; Hessen DO
    PeerJ; 2017; 5():e3743. PubMed ID: 28890852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Why Do Phytoplankton Evolve Large Size in Response to Grazing?
    Branco P; Egas M; Hall SR; Huisman J
    Am Nat; 2020 Jan; 195(1):E20-E37. PubMed ID: 31868537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation.
    Ustick LJ; Larkin AA; Garcia CA; Garcia NS; Brock ML; Lee JA; Wiseman NA; Moore JK; Martiny AC
    Science; 2021 Apr; 372(6539):287-291. PubMed ID: 33859034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.