These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 24039821)
1. AbaA regulates conidiogenesis in the ascomycete fungus Fusarium graminearum. Son H; Kim MG; Min K; Seo YS; Lim JY; Choi GJ; Kim JC; Chae SK; Lee YW PLoS One; 2013; 8(9):e72915. PubMed ID: 24039821 [TBL] [Abstract][Full Text] [Related]
2. FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum. Son H; Kim MG; Chae SK; Lee YW J Microbiol; 2014 Nov; 52(11):930-9. PubMed ID: 25277408 [TBL] [Abstract][Full Text] [Related]
3. WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus Fusarium graminearum. Son H; Kim MG; Min K; Lim JY; Choi GJ; Kim JC; Chae SK; Lee YW Eukaryot Cell; 2014 Jan; 13(1):87-98. PubMed ID: 24186953 [TBL] [Abstract][Full Text] [Related]
4. The transcription factor FgMed1 is involved in early conidiogenesis and DON biosynthesis in the plant pathogenic fungus Fusarium graminearum. Fan G; Zhang K; Zhang J; Yang J; Yang X; Hu Y; Huang J; Zhu Y; Yu W; Hu H; Wang B; Shim W; Lu GD Appl Microbiol Biotechnol; 2019 Jul; 103(14):5851-5865. PubMed ID: 31115634 [TBL] [Abstract][Full Text] [Related]
5. Con7 is a key transcription regulator for conidiogenesis in the plant pathogenic fungus Shin S; Park J; Yang L; Kim H; Choi GJ; Lee Y-W; Kim J-E; Son H mSphere; 2024 May; 9(5):e0081823. PubMed ID: 38591889 [TBL] [Abstract][Full Text] [Related]
6. The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Chen L; Tong Q; Zhang C; Ding K Curr Genet; 2019 Feb; 65(1):153-166. PubMed ID: 29947970 [TBL] [Abstract][Full Text] [Related]
7. FgHtf1 Regulates Global Gene Expression towards Aerial Mycelium and Conidiophore Formation in the Cereal Fungal Pathogen Fusarium graminearum. Fan G; Zheng H; Zhang K; Devi Ganeshan V; Opiyo SO; Liu D; Li M; Li G; Mitchell TK; Yun Y; Wang Z; Lu GD Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32086302 [TBL] [Abstract][Full Text] [Related]
8. The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Merhej J; Urban M; Dufresne M; Hammond-Kosack KE; Richard-Forget F; Barreau C Mol Plant Pathol; 2012 May; 13(4):363-74. PubMed ID: 22013911 [TBL] [Abstract][Full Text] [Related]
9. Utilization of a Conidia-Deficient Mutant to Study Sexual Development in Fusarium graminearum. Son H; Lim JY; Lee Y; Lee YW PLoS One; 2016; 11(5):e0155671. PubMed ID: 27175901 [TBL] [Abstract][Full Text] [Related]
10. The Sch9 kinase regulates conidium size, stress responses, and pathogenesis in Fusarium graminearum. Chen D; Wang Y; Zhou X; Wang Y; Xu JR PLoS One; 2014; 9(8):e105811. PubMed ID: 25144230 [TBL] [Abstract][Full Text] [Related]
11. Mr-AbaA Regulates Conidiation by Interacting with the Promoter Regions of Both Wu H; Tong Y; Zhou R; Wang Y; Wang Z; Ding T; Huang B Microbiol Spectr; 2021 Oct; 9(2):e0082321. PubMed ID: 34494863 [TBL] [Abstract][Full Text] [Related]
12. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Hu S; Zhou X; Gu X; Cao S; Wang C; Xu JR Mol Plant Microbe Interact; 2014 Jun; 27(6):557-66. PubMed ID: 24450772 [TBL] [Abstract][Full Text] [Related]
13. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Wu J; Liu Y; Lv W; Yue X; Que Y; Yang N; Zhang Z; Ma Z; Talbot NJ; Wang Z Fungal Genet Biol; 2015 Oct; 83():92-102. PubMed ID: 26341536 [TBL] [Abstract][Full Text] [Related]
14. Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum. Ding M; Li J; Fan X; He F; Yu X; Chen L; Zou S; Liang Y; Yu J Curr Genet; 2018 Oct; 64(5):1057-1069. PubMed ID: 29502265 [TBL] [Abstract][Full Text] [Related]
15. Multiple roles of a putative vacuolar protein sorting associated protein 74, FgVPS74, in the cereal pathogen Fusarium graminearum. Kim HK; Kim KW; Yun SH J Microbiol; 2015 Apr; 53(4):243-9. PubMed ID: 25845538 [TBL] [Abstract][Full Text] [Related]
16. PdbrlA, PdabaA and PdwetA control distinct stages of conidiogenesis in Penicillium digitatum. Wang M; Sun X; Zhu C; Xu Q; Ruan R; Yu D; Li H Res Microbiol; 2015 Jan; 166(1):56-65. PubMed ID: 25530311 [TBL] [Abstract][Full Text] [Related]
17. A conserved homeobox transcription factor Htf1 is required for phialide development and conidiogenesis in Fusarium species. Zheng W; Zhao X; Xie Q; Huang Q; Zhang C; Zhai H; Xu L; Lu G; Shim WB; Wang Z PLoS One; 2012; 7(9):e45432. PubMed ID: 23029006 [TBL] [Abstract][Full Text] [Related]
18. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Lee Y; Min K; Son H; Park AR; Kim JC; Choi GJ; Lee YW Mol Plant Microbe Interact; 2014 Dec; 27(12):1344-55. PubMed ID: 25083910 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae). Geng Z; Zhu W; Su H; Zhao Y; Zhang KQ; Yang J Biotechnol Adv; 2014; 32(2):390-402. PubMed ID: 24389085 [TBL] [Abstract][Full Text] [Related]
20. A winged-helix DNA-binding protein is essential for self-fertility during sexual development of the homothallic fungus Park J; Jeon H; Hwangbo A; Min K; Ko J; Kim J-E; Kim S; Shin JY; Lee Y-H; Lee Y-W; Son H mSphere; 2024 Sep; 9(9):e0051124. PubMed ID: 39189781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]