These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 24039821)
21. Neurospora crassa ASM-1 complements the conidiation defect in a stuA mutant of Aspergillus nidulans. Chung D; Upadhyay S; Bomer B; Wilkinson HH; Ebbole DJ; Shaw BD Mycologia; 2015; 107(2):298-306. PubMed ID: 25550299 [TBL] [Abstract][Full Text] [Related]
22. FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Jiang J; Yun Y; Liu Y; Ma Z Fungal Genet Biol; 2012 Aug; 49(8):653-62. PubMed ID: 22713714 [TBL] [Abstract][Full Text] [Related]
23. Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores. Wu MY; Mead ME; Lee MK; Neuhaus GF; Adpressa DA; Martien JI; Son YE; Moon H; Amador-Noguez D; Han KH; Rokas A; Loesgen S; Yu JH; Park HS mBio; 2021 Feb; 12(1):. PubMed ID: 33563821 [TBL] [Abstract][Full Text] [Related]
24. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum. Kim Y; Kim H; Son H; Choi GJ; Kim JC; Lee YW PLoS One; 2014; 9(4):e94359. PubMed ID: 24722578 [TBL] [Abstract][Full Text] [Related]
25. A novel gene, GEA1, is required for ascus cell-wall development in the ascomycete fungus Fusarium graminearum. Son H; Lee J; Lee YW Microbiology (Reading); 2013 Jun; 159(Pt 6):1077-1085. PubMed ID: 23619001 [TBL] [Abstract][Full Text] [Related]
26. Functional characterization of FgERG3 and FgERG5 associated with ergosterol biosynthesis, vegetative differentiation and virulence of Fusarium graminearum. Yun Y; Yin D; Dawood DH; Liu X; Chen Y; Ma Z Fungal Genet Biol; 2014 Jul; 68():60-70. PubMed ID: 24785759 [TBL] [Abstract][Full Text] [Related]
27. The FgNot3 Subunit of the Ccr4-Not Complex Regulates Vegetative Growth, Sporulation, and Virulence in Fusarium graminearum. Bui DC; Son H; Shin JY; Kim JC; Kim H; Choi GJ; Lee YW PLoS One; 2016; 11(1):e0147481. PubMed ID: 26799401 [TBL] [Abstract][Full Text] [Related]
28. Endocytic FgEde1 regulates virulence and autophagy in Fusarium graminearum. Han X; Chen L; Li W; Zhang L; Zhang L; Zou S; Liang Y; Yu J; Dong H Fungal Genet Biol; 2020 Aug; 141():103400. PubMed ID: 32387406 [TBL] [Abstract][Full Text] [Related]
29. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Li Y; Wang C; Liu W; Wang G; Kang Z; Kistler HC; Xu JR Mol Plant Microbe Interact; 2011 Apr; 24(4):487-96. PubMed ID: 21138346 [TBL] [Abstract][Full Text] [Related]
30. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum. Qin J; Wu M; Zhou S Curr Genet; 2020 Jun; 66(3):517-529. PubMed ID: 31728616 [TBL] [Abstract][Full Text] [Related]
31. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum. Zheng Z; Gao T; Hou Y; Zhou M FEMS Microbiol Lett; 2013 Dec; 349(2):88-98. PubMed ID: 24117691 [TBL] [Abstract][Full Text] [Related]
32. The novel bZIP transcription factor Fpo1 negatively regulates perithecial development by modulating carbon metabolism in the ascomycete fungus Fusarium graminearum. Shin J; Bui DC; Kim S; Jung SY; Nam HJ; Lim JY; Choi GJ; Lee YW; Kim JE; Son H Environ Microbiol; 2020 Jul; 22(7):2596-2612. PubMed ID: 32100421 [TBL] [Abstract][Full Text] [Related]
33. Systematic Dissection of the Evolutionarily Conserved WetA Developmental Regulator across a Genus of Filamentous Fungi. Wu MY; Mead ME; Lee MK; Ostrem Loss EM; Kim SC; Rokas A; Yu JH mBio; 2018 Aug; 9(4):. PubMed ID: 30131357 [TBL] [Abstract][Full Text] [Related]
35. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Yang P; Chen Y; Wu H; Fang W; Liang Q; Zheng Y; Olsson S; Zhang D; Zhou J; Wang Z; Zheng W Curr Genet; 2018 Feb; 64(1):285-301. PubMed ID: 28918485 [TBL] [Abstract][Full Text] [Related]
36. A Gin4-Like Protein Kinase GIL1 Involvement in Hyphal Growth, Asexual Development, and Pathogenesis in Fusarium graminearum. Yu D; Zhang S; Li X; Xu JR; Schultzhaus Z; Jin Q Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28212314 [No Abstract] [Full Text] [Related]
37. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. Zhang H; Li B; Fang Q; Li Y; Zheng X; Zhang Z Mol Plant Pathol; 2016 Jan; 17(1):108-19. PubMed ID: 25880818 [TBL] [Abstract][Full Text] [Related]
38. Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum. Song XS; Li HP; Zhang JB; Song B; Huang T; Du XM; Gong AD; Liu YK; Feng YN; Agboola RS; Liao YC Fungal Genet Biol; 2014 Feb; 63():24-41. PubMed ID: 24291007 [TBL] [Abstract][Full Text] [Related]
39. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
40. REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum. Ohara T; Inoue I; Namiki F; Kunoh H; Tsuge T Genetics; 2004 Jan; 166(1):113-24. PubMed ID: 15020411 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]