These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24039991)

  • 1. In silico mechanistic profiling to probe small molecule binding to sulfotransferases.
    Martiny VY; Carbonell P; Lagorce D; Villoutreix BO; Moroy G; Miteva MA
    PLoS One; 2013; 8(9):e73587. PubMed ID: 24039991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High accuracy in silico sulfotransferase models.
    Cook I; Wang T; Falany CN; Leyh TS
    J Biol Chem; 2013 Nov; 288(48):34494-501. PubMed ID: 24129576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Conformational Dynamics of Sulfotransferases SULT1A1 and SULT1A3 in Substrate Specificity.
    Toth D; Dudas B; Miteva MA; Balog E
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations.
    Dudas B; Toth D; Perahia D; Nicot AB; Balog E; Miteva MA
    Sci Rep; 2021 Jun; 11(1):13129. PubMed ID: 34162941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Prediction of Human Sulfotransferase 1E1 Activity Guided by Pharmacophores from Molecular Dynamics Simulations.
    Rakers C; Schumacher F; Meinl W; Glatt H; Kleuser B; Wolber G
    J Biol Chem; 2016 Jan; 291(1):58-71. PubMed ID: 26542807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition.
    Gamage NU; Duggleby RG; Barnett AC; Tresillian M; Latham CF; Liyou NE; McManus ME; Martin JL
    J Biol Chem; 2003 Feb; 278(9):7655-62. PubMed ID: 12471039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Analysis of Chemical Space of Natural Compounds Interacting with Sulfotransferases.
    Lessigiarska I; Peng Y; Tsakovska I; Alov P; Lagarde N; Jereva D; Villoutreix BO; Nicot AB; Pajeva I; Pencheva T; Miteva MA
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of mSULT1D1, a mouse catecholamine sulfotransferase.
    Teramoto T; Sakakibara Y; Inada K; Kurogi K; Liu MC; Suiko M; Kimura M; Kakuta Y
    FEBS Lett; 2008 Nov; 582(28):3909-14. PubMed ID: 18977225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative molecular field analysis-based approach to prediction of sulfotransferase catalytic specificity.
    Sharma V; Duffel MW
    Methods Enzymol; 2005; 400():249-63. PubMed ID: 16399353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated molecular modeling approach for in silico design of new tetracyclic derivatives as ALK inhibitors.
    Peddi SR; Sivan SK; Manga V
    J Recept Signal Transduct Res; 2016 Oct; 36(5):488-504. PubMed ID: 26758803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity.
    Dong D; Ako R; Wu B
    Expert Opin Drug Metab Toxicol; 2012 Jun; 8(6):635-46. PubMed ID: 22512672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular basis for the broad substrate specificity of human sulfotransferase 1A1.
    Berger I; Guttman C; Amar D; Zarivach R; Aharoni A
    PLoS One; 2011; 6(11):e26794. PubMed ID: 22069470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.
    Du QS; Gao J; Wei YT; Du LQ; Wang SQ; Huang RB
    J Chem Inf Model; 2012 Apr; 52(4):996-1004. PubMed ID: 22480344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of human SULT1A1 crystallized with estradiol. An insight into active site plasticity and substrate inhibition with multi-ring substrates.
    Gamage NU; Tsvetanov S; Duggleby RG; McManus ME; Martin JL
    J Biol Chem; 2005 Dec; 280(50):41482-6. PubMed ID: 16221673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel tumor necrosis factor-α (TNF-α) inhibitors from small molecule library screening for their therapeutic activity profiles against rheumatoid arthritis using target-driven approaches and binary QSAR models.
    Zaka M; Abbasi BH; Durdagi S
    J Biomol Struct Dyn; 2019 Jun; 37(9):2464-2476. PubMed ID: 30047845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations.
    Liu YY; Feng XY; Jia WQ; Jing Z; Xu WR; Cheng XC
    Comput Biol Chem; 2019 Feb; 78():190-204. PubMed ID: 30557817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of bovine phenol sulfotransferases: evidence of a major role for SULT1B1 in the liver.
    Choughule KV; Locuson CW; Coughtrie MW
    Xenobiotica; 2015; 45(6):495-502. PubMed ID: 25539458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoform-specific therapeutic control of sulfonation in humans.
    Cook I; Wang T; Leyh TS
    Biochem Pharmacol; 2019 Jan; 159():25-31. PubMed ID: 30423313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and localization of cytosolic sulfotransferase (SULT) 1A1 and SULT1A3 in normal human brain.
    Salman ED; Kadlubar SA; Falany CN
    Drug Metab Dispos; 2009 Apr; 37(4):706-9. PubMed ID: 19171676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of zebrafish as a model system for investigating the role of the SULTs in the metabolism of endogenous compounds and xenobiotics.
    Kurogi K; Liu TA; Sakakibara Y; Suiko M; Liu MC
    Drug Metab Rev; 2013 Nov; 45(4):431-40. PubMed ID: 24028174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.