These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 24040062)
1. De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. Yin D; Wang Y; Zhang X; Li H; Lu X; Zhang J; Zhang W; Chen S PLoS One; 2013; 8(9):e73767. PubMed ID: 24040062 [TBL] [Abstract][Full Text] [Related]
2. Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks. Gupta K; Kayam G; Faigenboim-Doron A; Clevenger J; Ozias-Akins P; Hovav R Plant Sci; 2016 Jul; 248():116-27. PubMed ID: 27181953 [TBL] [Abstract][Full Text] [Related]
3. New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages. Yu M; Liu F; Zhu W; Sun M; Liu J; Li X Funct Integr Genomics; 2015 Nov; 15(6):707-16. PubMed ID: 26071211 [TBL] [Abstract][Full Text] [Related]
4. Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut ( Liu H; Li H; Gu J; Deng L; Ren L; Hong Y; Lu Q; Chen X; Liang X Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29670063 [TBL] [Abstract][Full Text] [Related]
5. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata). Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660 [TBL] [Abstract][Full Text] [Related]
6. Expressed sequence tags in cultivated peanut (Arachis hypogaea): discovery of genes in seed development and response to Ralstonia solanacearum challenge. Huang J; Yan L; Lei Y; Jiang H; Ren X; Liao B J Plant Res; 2012 Nov; 125(6):755-69. PubMed ID: 22648474 [TBL] [Abstract][Full Text] [Related]
7. De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). Zhang J; Liang S; Duan J; Wang J; Chen S; Cheng Z; Zhang Q; Liang X; Li Y BMC Genomics; 2012 Mar; 13():90. PubMed ID: 22409576 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination. Xu P; Tang G; Cui W; Chen G; Ma CL; Zhu J; Li P; Shan L; Liu Z; Wan S PLoS One; 2020; 15(1):e0219413. PubMed ID: 31899920 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development. Zhang Y; Wang P; Xia H; Zhao C; Hou L; Li C; Gao C; Wang X; Zhao S BMC Genomics; 2016 Aug; 17(1):606. PubMed ID: 27514934 [TBL] [Abstract][Full Text] [Related]
10. Comparative Transcriptome Analysis of the Skin-Specific Accumulation of Anthocyanins in Black Peanut ( Arachis hypogaea L.). Huang J; Xing M; Li Y; Cheng F; Gu H; Yue C; Zhang Y J Agric Food Chem; 2019 Jan; 67(4):1312-1324. PubMed ID: 30614699 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analyses reveals the dynamic nature of oil accumulation during seed development of Plukenetia volubilis L. Liu G; Wu Z; Peng Y; Shang X; Xie Y; Arnold RJ Sci Rep; 2020 Nov; 10(1):20467. PubMed ID: 33235240 [TBL] [Abstract][Full Text] [Related]
12. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. Zhao C; Zhao S; Hou L; Xia H; Wang J; Li C; Li A; Li T; Zhang X; Wang X BMC Plant Biol; 2015 Aug; 15():188. PubMed ID: 26239120 [TBL] [Abstract][Full Text] [Related]
13. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. Guo B; Chen X; Dang P; Scully BT; Liang X; Holbrook CC; Yu J; Culbreath AK BMC Dev Biol; 2008 Feb; 8():12. PubMed ID: 18248674 [TBL] [Abstract][Full Text] [Related]
14. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism. Ke T; Yu J; Dong C; Mao H; Hua W; Liu S BMC Plant Biol; 2015 Jan; 15():19. PubMed ID: 25604238 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome Analysis and Identification of Lipid Genes in Chen GQ; Kim WN; Johnson K; Park ME; Lee KR; Kim HU Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419225 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis, a woody biodiesel species. Wu Q; Cao Y; Chen C; Gao Z; Yu F; Guy RD BMC Plant Biol; 2020 Mar; 20(1):121. PubMed ID: 32183691 [TBL] [Abstract][Full Text] [Related]
17. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889 [TBL] [Abstract][Full Text] [Related]
19. EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.). Bi YP; Liu W; Xia H; Su L; Zhao CZ; Wan SB; Wang XJ Genome; 2010 Oct; 53(10):832-9. PubMed ID: 20962890 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic Analysis Reveals the High-Oleic Acid Feedback Regulating the Homologous Gene Expression of Stearoyl-ACP Desaturase 2 ( Liu H; Gu J; Lu Q; Li H; Hong Y; Chen X; Ren L; Deng L; Liang X Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31242553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]