These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 24040074)
1. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian basin surface waters are undersaturated with respect to aragonite. Robbins LL; Wynn JG; Lisle JT; Yates KK; Knorr PO; Byrne RH; Liu X; Patsavas MC; Azetsu-Scott K; Takahashi T PLoS One; 2013; 8(9):e73796. PubMed ID: 24040074 [TBL] [Abstract][Full Text] [Related]
2. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Yamamoto-Kawai M; McLaughlin FA; Carmack EC; Nishino S; Shimada K Science; 2009 Nov; 326(5956):1098-100. PubMed ID: 19965425 [TBL] [Abstract][Full Text] [Related]
3. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020. Qi D; Ouyang Z; Chen L; Wu Y; Lei R; Chen B; Feely RA; Anderson LG; Zhong W; Lin H; Polukhin A; Zhang Y; Zhang Y; Bi H; Lin X; Luo Y; Zhuang Y; He J; Chen J; Cai WJ Science; 2022 Sep; 377(6614):1544-1550. PubMed ID: 36173841 [TBL] [Abstract][Full Text] [Related]
4. Emergent constraint on Arctic Ocean acidification in the twenty-first century. Terhaar J; Kwiatkowski L; Bopp L Nature; 2020 Jun; 582(7812):379-383. PubMed ID: 32555488 [TBL] [Abstract][Full Text] [Related]
5. Seasonal variation in aragonite saturation states and the controlling factors in the southeastern Yellow Sea. Choi Y; Cho S; Kim D Mar Pollut Bull; 2020 Jan; 150():110695. PubMed ID: 31740181 [TBL] [Abstract][Full Text] [Related]
6. Contrasting marine carbonate systems in two fjords in British Columbia, Canada: Seawater buffering capacity and the response to anthropogenic CO2 invasion. Hare A; Evans W; Pocock K; Weekes C; Gimenez I PLoS One; 2020; 15(9):e0238432. PubMed ID: 32881918 [TBL] [Abstract][Full Text] [Related]
7. Coastal freshening drives acidification state in Greenland fjords. Henson HC; Holding JM; Meire L; Rysgaard S; Stedmon CA; Stuart-Lee A; Bendtsen J; Sejr M Sci Total Environ; 2023 Jan; 855():158962. PubMed ID: 36170921 [TBL] [Abstract][Full Text] [Related]
9. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. McNeil BI; Matear RJ Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18860-4. PubMed ID: 19022908 [TBL] [Abstract][Full Text] [Related]
10. Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean. Perez FF; Fontela M; García-Ibáñez MI; Mercier H; Velo A; Lherminier P; Zunino P; de la Paz M; Alonso-Pérez F; Guallart EF; Padin XA Nature; 2018 Feb; 554(7693):515-518. PubMed ID: 29433125 [TBL] [Abstract][Full Text] [Related]
11. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Cai WJ; Chen L; Chen B; Gao Z; Lee SH; Chen J; Pierrot D; Sullivan K; Wang Y; Hu X; Huang WJ; Zhang Y; Xu S; Murata A; Grebmeier JM; Jones EP; Zhang H Science; 2010 Jul; 329(5991):556-9. PubMed ID: 20651119 [TBL] [Abstract][Full Text] [Related]
12. Physical and biological control of aragonite saturation in the coastal waters of southern South Korea under the influence of freshwater. Kim D; Park GH; Baek SH; Choi Y; Kim TW Mar Pollut Bull; 2018 Apr; 129(1):318-328. PubMed ID: 29680554 [TBL] [Abstract][Full Text] [Related]
13. Spectrophotometric Measurements of the Carbonate Ion Concentration: Aragonite Saturation States in the Mediterranean Sea and Atlantic Ocean. Fajar NM; García-Ibáñez MI; SanLeón-Bartolomé H; Álvarez M; Pérez FF Environ Sci Technol; 2015 Oct; 49(19):11679-87. PubMed ID: 26321414 [TBL] [Abstract][Full Text] [Related]
14. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting. Han D; Kang I; Ha HK; Kim HC; Kim OS; Lee BY; Cho JC; Hur HG; Lee YK PLoS One; 2014; 9(1):e86887. PubMed ID: 24497990 [TBL] [Abstract][Full Text] [Related]
15. A Novel Freshwater to Marine Evolutionary Transition Revealed within Ramachandran A; McLatchie S; Walsh DA mBio; 2021 Jun; 12(3):e0130621. PubMed ID: 34154421 [TBL] [Abstract][Full Text] [Related]
16. Temporal variations in the surface aragonite saturation state of the Yellow Sea: Observations at the Socheongcho Ocean Research Station during 2017-2022. Ko YH; Kim MS; Jeong JY; Jeong J; Seok MW; Kim Y; Kim TW Mar Pollut Bull; 2024 Jan; 198():115843. PubMed ID: 38039577 [TBL] [Abstract][Full Text] [Related]
17. Sea-ice transport driving Southern Ocean salinity and its recent trends. Haumann FA; Gruber N; Münnich M; Frenger I; Kern S Nature; 2016 Sep; 537(7618):89-92. PubMed ID: 27582222 [TBL] [Abstract][Full Text] [Related]
18. Does Arctic warming reduce preservation of organic matter in Barents Sea sediments? Faust JC; Stevenson MA; Abbott GD; Knies J; Tessin A; Mannion I; Ford A; Hilton R; Peakall J; März C Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190364. PubMed ID: 32862811 [TBL] [Abstract][Full Text] [Related]
19. Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies. de la Vega C; Jeffreys RM; Tuerena R; Ganeshram R; Mahaffey C Glob Chang Biol; 2019 Dec; 25(12):4116-4130. PubMed ID: 31498935 [TBL] [Abstract][Full Text] [Related]
20. Changes in the oxygen isotope composition of the Bering Sea contribution to the Arctic Ocean are an independent measure of increasing freshwater fluxes through the Bering Strait. Cooper LW; Magen C; Grebmeier JM PLoS One; 2022; 17(8):e0273065. PubMed ID: 36007084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]