These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 24040080)
21. Transcranial magnetic stimulation of the parietal cortex facilitates spatial working memory: near-infrared spectroscopy study. Yamanaka K; Yamagata B; Tomioka H; Kawasaki S; Mimura M Cereb Cortex; 2010 May; 20(5):1037-45. PubMed ID: 19684247 [TBL] [Abstract][Full Text] [Related]
22. FMRI effective connectivity and TMS chronometry: complementary accounts of causality in the visuospatial judgment network. de Graaf TA; Jacobs C; Roebroeck A; Sack AT PLoS One; 2009 Dec; 4(12):e8307. PubMed ID: 20011541 [TBL] [Abstract][Full Text] [Related]
23. Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study. Jung J; Bungert A; Bowtell R; Jackson SR Brain Stimul; 2016; 9(1):58-64. PubMed ID: 26508284 [TBL] [Abstract][Full Text] [Related]
25. Limited Contribution of Primary Motor Cortex in Eye-Hand Coordination: A TMS Study. Mathew J; Eusebio A; Danion F J Neurosci; 2017 Oct; 37(40):9730-9740. PubMed ID: 28893926 [TBL] [Abstract][Full Text] [Related]
26. Time course of the state-dependent effect of transcranial magnetic stimulation in the TMS-adaptation paradigm. Cattaneo Z; Silvanto J Neurosci Lett; 2008 Oct; 443(2):82-5. PubMed ID: 18672027 [TBL] [Abstract][Full Text] [Related]
27. Initial activation state, stimulation intensity and timing of stimulation interact in producing behavioral effects of TMS. Silvanto J; Bona S; Cattaneo Z Neuroscience; 2017 Nov; 363():134-141. PubMed ID: 28893648 [TBL] [Abstract][Full Text] [Related]
28. Task-guided selection of the dual neural pathways for reading. Nakamura K; Hara N; Kouider S; Takayama Y; Hanajima R; Sakai K; Ugawa Y Neuron; 2006 Nov; 52(3):557-64. PubMed ID: 17088220 [TBL] [Abstract][Full Text] [Related]
29. Time-dependent activation of parieto-frontal networks for directing attention to tactile space. A study with paired transcranial magnetic stimulation pulses in right-brain-damaged patients with extinction. Oliveri M; Rossini PM; Filippi MM; Traversa R; Cicinelli P; Palmieri MG; Pasqualetti P; Caltagirone C Brain; 2000 Sep; 123 ( Pt 9)():1939-47. PubMed ID: 10960057 [TBL] [Abstract][Full Text] [Related]
30. A structured ICA-based process for removing auditory evoked potentials. Ross JM; Ozdemir RA; Lian SJ; Fried PJ; Schmitt EM; Inouye SK; Pascual-Leone A; Shafi MM Sci Rep; 2022 Jan; 12(1):1391. PubMed ID: 35082350 [TBL] [Abstract][Full Text] [Related]
31. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging. Andoh J; Zatorre RJ J Vis Exp; 2012 Sep; (67):e3985. PubMed ID: 23007549 [TBL] [Abstract][Full Text] [Related]
32. A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters. Borckardt JJ; Reeves ST; Beam W; Jensen MP; Gracely RH; Katz S; Smith AR; Madan A; Patterson D; George MS Clin J Pain; 2011; 27(6):486-94. PubMed ID: 21415720 [TBL] [Abstract][Full Text] [Related]
33. Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. Sack AT; Cohen Kadosh R; Schuhmann T; Moerel M; Walsh V; Goebel R J Cogn Neurosci; 2009 Feb; 21(2):207-21. PubMed ID: 18823235 [TBL] [Abstract][Full Text] [Related]
34. Dissociating the contributions of human frontal eye fields and posterior parietal cortex to visual search. Muggleton NG; Kalla R; Juan CH; Walsh V J Neurophysiol; 2011 Jun; 105(6):2891-6. PubMed ID: 21490286 [TBL] [Abstract][Full Text] [Related]
35. Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. Schwarzkopf DS; Silvanto J; Rees G J Neurosci; 2011 Mar; 31(9):3143-7. PubMed ID: 21368025 [TBL] [Abstract][Full Text] [Related]
36. Occipital transcranial magnetic stimulation has an activity-dependent suppressive effect. Perini F; Cattaneo L; Carrasco M; Schwarzbach JV J Neurosci; 2012 Sep; 32(36):12361-5. PubMed ID: 22956826 [TBL] [Abstract][Full Text] [Related]
37. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Conde V; Tomasevic L; Akopian I; Stanek K; Saturnino GB; Thielscher A; Bergmann TO; Siebner HR Neuroimage; 2019 Jan; 185():300-312. PubMed ID: 30347282 [TBL] [Abstract][Full Text] [Related]
38. Self-specific processing in the default network: a single-pulse TMS study. Lou HC; Luber B; Stanford A; Lisanby SH Exp Brain Res; 2010 Nov; 207(1-2):27-38. PubMed ID: 20878395 [TBL] [Abstract][Full Text] [Related]
39. TMS over the intraparietal sulcus induces perceptual fading. Kanai R; Muggleton NG; Walsh V J Neurophysiol; 2008 Dec; 100(6):3343-50. PubMed ID: 18922944 [TBL] [Abstract][Full Text] [Related]
40. Assessing the effects of physical and perceived luminance contrast on RT and TMS-induced percepts. Knight R; Mazzi C; Savazzi S Exp Brain Res; 2015 Dec; 233(12):3527-34. PubMed ID: 26314754 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]