BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 24040201)

  • 41. Inhibition of Candida albicans biofilm and hyphae formation by biocompatible oligomers.
    Lee JH; Kim YG; Lee J
    Lett Appl Microbiol; 2018 Aug; 67(2):123-129. PubMed ID: 29885256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of biofilm- and hyphal- development, two virulent features of Candida albicans by secondary metabolites of an endophytic fungus Alternaria tenuissima having broad spectrum antifungal potential.
    Chatterjee S; Ghosh R; Mandal NC
    Microbiol Res; 2020 Feb; 232():126386. PubMed ID: 31816593
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Dietary Food Components Capric Acid and Caprylic Acid Inhibit Virulence Factors in Candida albicans Through Multitargeting.
    Jadhav A; Mortale S; Halbandge S; Jangid P; Patil R; Gade W; Kharat K; Karuppayil SM
    J Med Food; 2017 Nov; 20(11):1083-1090. PubMed ID: 28922057
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cancer drugs inhibit morphogenesis in the human fungal pathogen, Candida albicans.
    Routh MM; Chauhan NM; Karuppayil SM
    Braz J Microbiol; 2013; 44(3):855-9. PubMed ID: 24516452
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.
    Haque F; Alfatah M; Ganesan K; Bhattacharyya MS
    Sci Rep; 2016 Mar; 6():23575. PubMed ID: 27030404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans.
    Stichternoth C; Fraund A; Setiadi E; Giasson L; Vecchiarelli A; Ernst JF
    Eukaryot Cell; 2011 Apr; 10(4):502-11. PubMed ID: 21335533
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Demonstration of β-1,2 mannan structures expressed on the cell wall of Candida albicans yeast form but not on the hyphal form by using monoclonal antibodies].
    Aydın C; Ataoğlu H
    Mikrobiyol Bul; 2015 Jan; 49(1):66-76. PubMed ID: 25706732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis.
    Bar-Yosef H; Vivanco Gonzalez N; Ben-Aroya S; Kron SJ; Kornitzer D
    Sci Rep; 2017 Jul; 7(1):5692. PubMed ID: 28720834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two new triterpenoid saponins from Gymnema sylvestre.
    Zhu XM; Xie P; Di YT; Peng SL; Ding LS; Wang MK
    J Integr Plant Biol; 2008 May; 50(5):589-92. PubMed ID: 18713427
    [TBL] [Abstract][Full Text] [Related]  

  • 50.
    Kim H; Hwang JY; Chung B; Cho E; Bae S; Shin J; Oh KB
    Mar Drugs; 2019 Feb; 17(2):. PubMed ID: 30813382
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subunits of the vacuolar H+-ATPase complex, Vma4 and Vma10, are essential for virulence and represent potential drug targets in Candida albicans.
    Kim SW; Park YK; Joo YJ; Chun YJ; Hwang JY; Baek JH; Kim J
    Fungal Biol; 2019 Oct; 123(10):709-722. PubMed ID: 31542189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans.
    Lim CS; Wong WF; Rosli R; Ng KP; Seow HF; Chong PP
    J Basic Microbiol; 2009 Dec; 49(6):579-83. PubMed ID: 19810039
    [TBL] [Abstract][Full Text] [Related]  

  • 53. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis.
    Watanabe NA; Miyazaki M; Horii T; Sagane K; Tsukahara K; Hata K
    Antimicrob Agents Chemother; 2012 Feb; 56(2):960-71. PubMed ID: 22143530
    [TBL] [Abstract][Full Text] [Related]  

  • 54.
    Romo JA; Pierce CG; Esqueda M; Hung CY; Saville SP; Lopez-Ribot JL
    Front Cell Infect Microbiol; 2018; 8():227. PubMed ID: 30042929
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion.
    Garcia C; Burgain A; Chaillot J; Pic É; Khemiri I; Sellam A
    Sci Rep; 2018 Aug; 8(1):11559. PubMed ID: 30068935
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo anti-ulcer, anti-stress, anti-allergic, and functional properties of gymnemic acid isolated from Gymnema sylvestre R Br.
    Arun LB; Arunachalam AM; Arunachalam KD; Annamalai SK; Kumar KA
    BMC Complement Altern Med; 2014 Feb; 14():70. PubMed ID: 24559073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages.
    Uwamahoro N; Verma-Gaur J; Shen HH; Qu Y; Lewis R; Lu J; Bambery K; Masters SL; Vince JE; Naderer T; Traven A
    mBio; 2014 Mar; 5(2):e00003-14. PubMed ID: 24667705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.
    Mech F; Wilson D; Lehnert T; Hube B; Thilo Figge M
    Cytometry A; 2014 Feb; 85(2):126-39. PubMed ID: 24259441
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phenylpropanoids of plant origin as inhibitors of biofilm formation by Candida albicans.
    Raut JS; Shinde RB; Chauhan NM; Karuppayil SM
    J Microbiol Biotechnol; 2014 Sep; 24(9):1216-25. PubMed ID: 24851813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans.
    Toenjes KA; Munsee SM; Ibrahim AS; Jeffrey R; Edwards JE; Johnson DI
    Antimicrob Agents Chemother; 2005 Mar; 49(3):963-72. PubMed ID: 15728890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.