These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 24040832)
21. Controlled charge-dynamics in cobalt-doped TiO Liu C; Wang F; Zhu S; Xu Y; Liang Q; Chen Z J Colloid Interface Sci; 2018 Nov; 530():403-411. PubMed ID: 29982032 [TBL] [Abstract][Full Text] [Related]
22. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Xu M; Da P; Wu H; Zhao D; Zheng G Nano Lett; 2012 Mar; 12(3):1503-8. PubMed ID: 22364360 [TBL] [Abstract][Full Text] [Related]
23. Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting. Chen H; Wei Z; Yan K; Bai Y; Zhu Z; Zhang T; Yang S Small; 2014 Nov; 10(22):4760-9. PubMed ID: 24990800 [TBL] [Abstract][Full Text] [Related]
24. Robust Protection of III-V Nanowires in Water Splitting by a Thin Compact TiO Cui F; Zhang Y; Fonseka HA; Promdet P; Channa AI; Wang M; Xia X; Sathasivam S; Liu H; Parkin IP; Yang H; Li T; Choy KL; Wu J; Blackman C; Sanchez AM; Liu H ACS Appl Mater Interfaces; 2021 Jul; 13(26):30950-30958. PubMed ID: 34160197 [TBL] [Abstract][Full Text] [Related]
25. Theoretical consideration of III-V nanowire/Si triple-junction solar cells. Wen L; Li X; Zhao Z; Bu S; Zeng X; Huang JH; Wang Y Nanotechnology; 2012 Dec; 23(50):505202. PubMed ID: 23182996 [TBL] [Abstract][Full Text] [Related]
26. An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition. Subannajui K; Güder F; Danhof J; Menzel A; Yang Y; Kirste L; Wang C; Cimalla V; Schwarz U; Zacharias M Nanotechnology; 2012 Jun; 23(23):235607. PubMed ID: 22609898 [TBL] [Abstract][Full Text] [Related]
27. Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis. García Núñez C; García Marín A; Nanterne P; Piqueras J; Kung P; Pau JL Nanotechnology; 2013 Oct; 24(41):415702. PubMed ID: 24045231 [TBL] [Abstract][Full Text] [Related]
28. In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations. Xiao FX; Liu B Nanoscale; 2017 Nov; 9(43):17118-17132. PubMed ID: 29087419 [TBL] [Abstract][Full Text] [Related]
29. Large-area ordered P-type Si nanowire arrays as photocathode for highly efficient photoelectrochemical hydrogen generation. Huang S; Zhang H; Wu Z; Kong D; Lin D; Fan Y; Yang X; Zhong Z; Huang S; Jiang Z; Cheng C ACS Appl Mater Interfaces; 2014 Aug; 6(15):12111-8. PubMed ID: 25020241 [TBL] [Abstract][Full Text] [Related]
30. Mesoporous Ultrathin In Yan G; Dong Y; Wu T; Xing S; Wang X ACS Appl Mater Interfaces; 2021 Nov; 13(44):52912-52920. PubMed ID: 34709787 [TBL] [Abstract][Full Text] [Related]
31. Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells. Xie J; Guo C; Li CM Phys Chem Chem Phys; 2013 Oct; 15(38):15905-11. PubMed ID: 23945632 [TBL] [Abstract][Full Text] [Related]
32. Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement. Shin JC; Mohseni PK; Yu KJ; Tomasulo S; Montgomery KH; Lee ML; Rogers JA; Li X ACS Nano; 2012 Dec; 6(12):11074-9. PubMed ID: 23128184 [TBL] [Abstract][Full Text] [Related]
33. Facet cutting and hydrogenation of In(2)O(3) nanowires for enhanced photoelectrochemical water splitting. Meng M; Wu X; Zhu X; Zhu X; Chu PK ACS Appl Mater Interfaces; 2014 Mar; 6(6):4081-8. PubMed ID: 24568166 [TBL] [Abstract][Full Text] [Related]
35. Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells. Ramadurgam S; Lin TG; Yang C Nano Lett; 2014 Aug; 14(8):4517-22. PubMed ID: 24971707 [TBL] [Abstract][Full Text] [Related]
36. Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects. Luo Z; Wang T; Gong J Chem Soc Rev; 2019 Apr; 48(7):2158-2181. PubMed ID: 30601502 [TBL] [Abstract][Full Text] [Related]
37. Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Shi J; Hara Y; Sun C; Anderson MA; Wang X Nano Lett; 2011 Aug; 11(8):3413-9. PubMed ID: 21770438 [TBL] [Abstract][Full Text] [Related]
38. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation. Chen Y; Tran PD; Boix P; Ren Y; Chiam SY; Li Z; Fu K; Wong LH; Barber J ACS Nano; 2015 Apr; 9(4):3829-36. PubMed ID: 25801437 [TBL] [Abstract][Full Text] [Related]
39. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231 [TBL] [Abstract][Full Text] [Related]
40. Photoelectrochemical Hydrogen Production of TiO2 Passivated Pt/Si-Nanowire Composite Photocathode. Li S; Zhang P; Song X; Gao L ACS Appl Mater Interfaces; 2015 Aug; 7(33):18560-5. PubMed ID: 26263477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]