BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24041016)

  • 1. Optimizing electrostatic field calculations with the adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces. I. Sampling and focusing.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2013 Oct; 117(39):11473-89. PubMed ID: 24041016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational Stark effect spectroscopy at the interface of Ras and Rap1A bound to the Ras binding domain of RalGDS reveals an electrostatic mechanism for protein-protein interaction.
    Stafford AJ; Ensign DL; Webb LJ
    J Phys Chem B; 2010 Nov; 114(46):15331-44. PubMed ID: 20964430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing electrostatic field calculations with the Adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces II: explicit near-probe and hydrogen-bonding water molecules.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2014 Jul; 118(28):7692-702. PubMed ID: 24446740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved electrostatic fields at the Ras-effector interface measured through vibrational Stark effect spectroscopy explain the difference in tilt angle in the Ras binding domains of Raf and RalGDS.
    Walker DM; Wang R; Webb LJ
    Phys Chem Chem Phys; 2014 Oct; 16(37):20047-60. PubMed ID: 25127074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of electrostatics in differential binding of RalGDS to Rap mutations E30D and K31E investigated by vibrational spectroscopy of thiocyanate probes.
    Ragain CM; Newberry RW; Ritchie AW; Webb LJ
    J Phys Chem B; 2012 Aug; 116(31):9326-36. PubMed ID: 22738401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors determining electrostatic fields in molecular dynamics simulations of the Ras/effector interface.
    Ensign DL; Webb LJ
    Proteins; 2011 Dec; 79(12):3511-24. PubMed ID: 21748802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational Stark effect spectroscopy reveals complementary electrostatic fields created by protein-protein binding at the interface of Ras and Ral.
    Walker DM; Hayes EC; Webb LJ
    Phys Chem Chem Phys; 2013 Aug; 15(29):12241-52. PubMed ID: 23771025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.
    Felberg LE; Brookes DH; Yap EH; Jurrus E; Baker NA; Head-Gordon T
    J Comput Chem; 2017 Jun; 38(15):1275-1282. PubMed ID: 27804145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Features of CPB: a Poisson-Boltzmann solver that uses an adaptive Cartesian grid.
    Fenley MO; Harris RC; Mackoy T; Boschitsch AH
    J Comput Chem; 2015 Feb; 36(4):235-43. PubMed ID: 25430617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accelerated nonlocal Poisson-Boltzmann equation solver for electrostatics of biomolecule.
    Ying J; Xie D
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3129. PubMed ID: 30021243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthogonal Electric Field Measurements near the Green Fluorescent Protein Fluorophore through Stark Effect Spectroscopy and pK
    Slocum JD; First JT; Webb LJ
    J Phys Chem B; 2017 Jul; 121(28):6799-6812. PubMed ID: 28650636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ARGOS: An adaptive refinement goal-oriented solver for the linearized Poisson-Boltzmann equation.
    Nakov S; Sobakinskaya E; Renger T; Kraus J
    J Comput Chem; 2021 Oct; 42(26):1832-1860. PubMed ID: 34302374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.
    Nguyen DD; Wang B; Wei GW
    J Comput Chem; 2017 May; 38(13):941-948. PubMed ID: 28211071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein electrostatics: a review of the equations and methods used to model electrostatic equations in biomolecules--applications in biotechnology.
    Neves-Petersen MT; Petersen SB
    Biotechnol Annu Rev; 2003; 9():315-95. PubMed ID: 14650935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AESOP: A Python Library for Investigating Electrostatics in Protein Interactions.
    Harrison RES; Mohan RR; Gorham RD; Kieslich CA; Morikis D
    Biophys J; 2017 May; 112(9):1761-1766. PubMed ID: 28494947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2015 Nov; 119(44):13945-57. PubMed ID: 26375183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method.
    Lu B; Zhang D; McCammon JA
    J Chem Phys; 2005 Jun; 122(21):214102. PubMed ID: 15974723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein electrostatics: rapid multigrid-based Newton algorithm for solution of the full nonlinear Poisson-Boltzmann equation.
    Holst M; Kozack RE; Saied F; Subramaniam S
    J Biomol Struct Dyn; 1994 Jun; 11(6):1437-45. PubMed ID: 7946084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. APBSmem: a graphical interface for electrostatic calculations at the membrane.
    Callenberg KM; Choudhary OP; de Forest GL; Gohara DW; Baker NA; Grabe M
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20949122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.