BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24041030)

  • 1. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences.
    Li Y; Gu Q; Lin Z; Wang Z; Chen T; Zhao X
    ACS Synth Biol; 2013 Nov; 2(11):651-61. PubMed ID: 24041030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive genomic insertion of gene-sized dsDNAs by targeting the promoter region of a counter-selectable marker.
    Jeong J; Seo HN; Jung YK; Lee J; Ryu G; Lee W; Kwon E; Ryoo K; Kim J; Cho HY; Cho KM; Park JH; Bang D
    Sci Rep; 2015 Mar; 5():8712. PubMed ID: 25736821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).
    Merrick CA; Wardrope C; Paget JE; Colloms SD; Rosser SJ
    Methods Enzymol; 2016; 575():285-317. PubMed ID: 27417934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mycoplasma pneumoniae MPN229 gene encodes a protein that selectively binds single-stranded DNA and stimulates Recombinase A-mediated DNA strand exchange.
    Sluijter M; Hoogenboezem T; Hartwig NG; Vink C
    BMC Microbiol; 2008 Oct; 8():167. PubMed ID: 18831760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial modulation of initial codons for improved zeaxanthin synthetic pathway efficiency in Escherichia coli.
    Wu Z; Zhao D; Li S; Wang J; Bi C; Zhang X
    Microbiologyopen; 2019 Dec; 8(12):e930. PubMed ID: 31532062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli.
    Xu P; Vansiri A; Bhan N; Koffas MA
    ACS Synth Biol; 2012 Jul; 1(7):256-66. PubMed ID: 23651248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions.
    Bui le M; Lee JY; Geraldi A; Rahman Z; Lee JH; Kim SC
    J Biotechnol; 2015 Jun; 204():33-44. PubMed ID: 25858152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid one-step inactivation of single or multiple genes in Escherichia coli.
    Song CW; Lee SY
    Biotechnol J; 2013 Jul; 8(7):776-84. PubMed ID: 23653342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering.
    Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ
    Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway.
    Zhu X; Zhao D; Qiu H; Fan F; Man S; Bi C; Zhang X
    Metab Eng; 2017 Sep; 43(Pt A):37-45. PubMed ID: 28800965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Dynamic Regulation to Increase L-Phenylalanine Production in
    Wu J; Liu Y; Zhao S; Sun J; Jin Z; Zhang D
    J Microbiol Biotechnol; 2019 Jun; 29(6):923-932. PubMed ID: 31154747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of targeted proteomics to metabolically engineered Escherichia coli.
    Singh P; Batth TS; Juminaga D; Dahl RH; Keasling JD; Adams PD; Petzold CJ
    Proteomics; 2012 Apr; 12(8):1289-99. PubMed ID: 22577029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of phloroglucinol by Escherichia coli using a stationary-phase promoter.
    Cao Y; Xian M
    Biotechnol Lett; 2011 Sep; 33(9):1853-8. PubMed ID: 21544607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One step DNA assembly for combinatorial metabolic engineering.
    Coussement P; Maertens J; Beauprez J; Van Bellegem W; De Mey M
    Metab Eng; 2014 May; 23():70-7. PubMed ID: 24594279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Escherichia coli coculture systems for the production of biochemical products.
    Zhang H; Pereira B; Li Z; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8266-71. PubMed ID: 26111796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning.
    Braatsch S; Helmark S; Kranz H; Koebmann B; Jensen PR
    Biotechniques; 2008 Sep; 45(3):335-7. PubMed ID: 18778259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence analysis of an Erwinia stewartii plasmid, pSW100.
    Fu JF; Chang HC; Chen YM; Chang YS; Liu ST
    Plasmid; 1995 Sep; 34(2):75-84. PubMed ID: 8559805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to express a heterologous gene on Kluyveromyces lactis linear killer plasmids: expression of the bacterial aph gene from a cytoplasmic promoter fragment without in-phase fusion to the plasmid open reading frame.
    Meinhardt F; Wodara C; Larsen M; Schickel J
    Plasmid; 1994 Nov; 32(3):318-27. PubMed ID: 7899517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid engineering of the geldanamycin biosynthesis pathway by Red/ET recombination and gene complementation.
    Vetcher L; Tian ZQ; McDaniel R; Rascher A; Revill WP; Hutchinson CR; Hu Z
    Appl Environ Microbiol; 2005 Apr; 71(4):1829-35. PubMed ID: 15812008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Purified Tyrosine Site-Specific Recombinases In Vitro to Rapidly Construct and Diversify Metabolic Pathways.
    Liu W; Tuck LR; Wright JM; Cai Y
    Methods Mol Biol; 2017; 1642():285-302. PubMed ID: 28815507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.