These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 24041038)

  • 1. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the position and orientation of single silver nanowires on a surface using structured optical fields.
    Yan Z; Sweet J; Jureller JE; Guffey MJ; Pelton M; Scherer NF
    ACS Nano; 2012 Sep; 6(9):8144-55. PubMed ID: 22900883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional optical trapping and manipulation of single silver nanowires.
    Yan Z; Jureller JE; Sweet J; Guffey MJ; Pelton M; Scherer NF
    Nano Lett; 2012 Oct; 12(10):5155-61. PubMed ID: 22931238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam.
    Garcés-Chávez V; McGloin D; Melville H; Sibbett W; Dholakia K
    Nature; 2002 Sep; 419(6903):145-7. PubMed ID: 12226659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles.
    Fedoruk M; Meixner M; Carretero-Palacios S; Lohmüller T; Feldmann J
    ACS Nano; 2013 Sep; 7(9):7648-53. PubMed ID: 23941522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical funneling and trapping of gold colloids in convergent laser beams.
    Königer A; Köhler W
    ACS Nano; 2012 May; 6(5):4400-9. PubMed ID: 22530733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.
    Tong L; Miljković VD; Käll M
    Nano Lett; 2010 Jan; 10(1):268-73. PubMed ID: 20030391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping.
    Wang F; Toe WJ; Lee WM; McGloin D; Gao Q; Tan HH; Jagadish C; Reece PJ
    Nano Lett; 2013 Mar; 13(3):1185-91. PubMed ID: 23394286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.
    Zhang L; Dou X; Min C; Zhang Y; Du L; Xie Z; Shen J; Zeng Y; Yuan X
    Nanoscale; 2016 May; 8(18):9756-63. PubMed ID: 27117313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position clamping in a holographic counterpropagating optical trap.
    Bowman R; Jesacher A; Thalhammer G; Gibson G; Ritsch-Marte M; Padgett M
    Opt Express; 2011 May; 19(10):9908-14. PubMed ID: 21643247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles.
    Arzola AV; Jákl P; Chvátal L; Zemánek P
    Opt Express; 2014 Jun; 22(13):16207-21. PubMed ID: 24977872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability analysis and thermal motion of optically trapped nanowires.
    Simpson SH; Hanna S
    Nanotechnology; 2012 May; 23(20):205502. PubMed ID: 22543265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study.
    Trojek J; Chvátal L; Zemánek P
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1224-36. PubMed ID: 22751387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisit on dynamic radiation forces induced by pulsed Gaussian beams.
    Wang LG; Chai HS
    Opt Express; 2011 Jul; 19(15):14389-402. PubMed ID: 21934801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping volume control in optical tweezers using cylindrical vector beams.
    Skelton SE; Sergides M; Saija R; Iatì MA; Maragó OM; Jones PH
    Opt Lett; 2013 Jan; 38(1):28-30. PubMed ID: 23282827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.