BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24041310)

  • 1. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Wewetzer SJ; Sinskey AJ
    Biotechnol Biofuels; 2013 Sep; 6(1):134. PubMed ID: 24041310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of a xylose metabolic pathway in Rhodococcus strains.
    Xiong X; Wang X; Chen S
    Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels.
    Kurosawa K; Radek A; Plassmeier JK; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():31. PubMed ID: 25763105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Plassmeier J; Kalinowski J; Rückert C; Sinskey AJ
    Metab Eng; 2015 Jul; 30():89-95. PubMed ID: 25936337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors.
    Kurosawa K; Laser J; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():76. PubMed ID: 26052344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production.
    Kurosawa K; Boccazzi P; de Almeida NM; Sinskey AJ
    J Biotechnol; 2010 Jun; 147(3-4):212-8. PubMed ID: 20412824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates.
    Wang B; Rezenom YH; Cho KC; Tran JL; Lee DG; Russell DH; Gill JJ; Young R; Chu KH
    Bioresour Technol; 2014 Jun; 161():162-70. PubMed ID: 24698742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of
    Mao Y; Li G; Chang Z; Tao R; Cui Z; Wang Z; Tang YJ; Chen T; Zhao X
    Biotechnol Biofuels; 2018; 11():95. PubMed ID: 29636817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630.
    Hernández MA; Arabolaza A; Rodríguez E; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2119-30. PubMed ID: 22926642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of efficient xylose utilization strains of Zymomonas mobilis.
    Lou J; Wang J; Yang Y; Yang Q; Li R; Hu M; He Q; Du J; Wang X; Li M; Yang S
    Biotechnol Biofuels; 2021 Dec; 14(1):231. PubMed ID: 34863266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals.
    Castro AR; Rocha I; Alves MM; Pereira MA
    AMB Express; 2016 Dec; 6(1):35. PubMed ID: 27179529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of
    Anthony WE; Carr RR; DeLorenzo DM; Campbell TP; Shang Z; Foston M; Moon TS; Dantas G
    Biotechnol Biofuels; 2019; 12():192. PubMed ID: 31404385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation.
    MacEachran DP; Prophete ME; Sinskey AJ
    Appl Environ Microbiol; 2010 Nov; 76(21):7217-25. PubMed ID: 20851968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
    Holder JW; Ulrich JC; DeBono AC; Godfrey PA; Desjardins CA; Zucker J; Zeng Q; Leach AL; Ghiviriga I; Dancel C; Abeel T; Gevers D; Kodira CD; Desany B; Affourtit JP; Birren BW; Sinskey AJ
    PLoS Genet; 2011 Sep; 7(9):e1002219. PubMed ID: 21931557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630.
    Alvarez AF; Alvarez HM; Kalscheuer R; Wältermann M; Steinbüchel A
    Microbiology (Reading); 2008 Aug; 154(Pt 8):2327-2335. PubMed ID: 18667565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased triacylglycerol production in Rhodococcus opacus by overexpressing transcriptional regulators.
    Anthony WE; Geng W; Diao J; Carr RR; Wang B; Ning J; Moon TS; Dantas G; Zhang F
    Biotechnol Biofuels Bioprod; 2024 Jun; 17(1):83. PubMed ID: 38898475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.