These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24041330)

  • 21. Speech perception skills and speech production intelligibility in French children with prelingual deafness and cochlear implants.
    Mondain M; Sillon M; Vieu A; Lanvin M; Reuillard-Artieres F; Tobey E; Uziel A
    Arch Otolaryngol Head Neck Surg; 1997 Feb; 123(2):181-4. PubMed ID: 9046286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children With Normal Hearing: A Replication and Extension of ).
    Roman AS; Pisoni DB; Kronenberger WG; Faulkner KF
    Ear Hear; 2017; 38(3):344-356. PubMed ID: 28045787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perceptual Discrimination of Speaking Style Under Cochlear Implant Simulation.
    Tamati TN; Janse E; Başkent D
    Ear Hear; 2019; 40(1):63-76. PubMed ID: 29742545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Word recognition by children listening to speech processed into a small number of channels: data from normal-hearing children and children with cochlear implants.
    Dorman MF; Loizou PC; Kemp LL; Kirk KI
    Ear Hear; 2000 Dec; 21(6):590-6. PubMed ID: 11132785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Recognition of Whispered Speech in Real-Time.
    Hendrickson K; Ernest D
    Ear Hear; 2022; 43(2):554-562. PubMed ID: 34582392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effect of Learning Modality and Auditory Feedback on Word Memory: Cochlear-Implanted versus Normal-Hearing Adults.
    Taitelbaum-Swead R; Icht M; Mama Y
    J Am Acad Audiol; 2017 Mar; 28(3):222-231. PubMed ID: 28277213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in speech intelligibility of postlingually deaf adults after cochlear implantation.
    Gould J; Lane H; Vick J; Perkell JS; Matthies ML; Zandipour M
    Ear Hear; 2001 Dec; 22(6):453-60. PubMed ID: 11770668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lexical effects on spoken word recognition performance among Mandarin-speaking children with normal hearing and cochlear implants.
    Wang NM; Wu CM; Kirk KI
    Int J Pediatr Otorhinolaryngol; 2010 Aug; 74(8):883-90. PubMed ID: 20846499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating the function of phonetic perceptual phenomena within speech recognition: an examination of the perception of /d/-/t/ by adult cochlear implant users.
    Iverson P
    J Acoust Soc Am; 2003 Feb; 113(2):1056-64. PubMed ID: 12597198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amplitude Modulation Detection and Speech Recognition in Late-Implanted Prelingually and Postlingually Deafened Cochlear Implant Users.
    De Ruiter AM; Debruyne JA; Chenault MN; Francart T; Brokx JP
    Ear Hear; 2015; 36(5):557-66. PubMed ID: 25851075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of cooperating and conflicting cues on speech intonation recognition by cochlear implant users and normal hearing listeners.
    Peng SC; Lu N; Chatterjee M
    Audiol Neurootol; 2009; 14(5):327-37. PubMed ID: 19372651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Consequences of Stimulus Type on Higher-Order Processing in Single-Sided Deaf Cochlear Implant Users.
    Finke M; Sandmann P; Bönitz H; Kral A; Büchner A
    Audiol Neurootol; 2016; 21(5):305-315. PubMed ID: 27866186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility of real-time selection of frequency tables in an acoustic simulation of a cochlear implant.
    Fitzgerald MB; Sagi E; Morbiwala TA; Tan CT; Svirsky MA
    Ear Hear; 2013; 34(6):763-72. PubMed ID: 23807089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconsidering the role of temporal order in spoken word recognition.
    Toscano JC; Anderson ND; McMurray B
    Psychon Bull Rev; 2013 Oct; 20(5):981-7. PubMed ID: 23456328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of orthographic information during listening comprehension: A printed-word visual world study.
    Ito A
    Q J Exp Psychol (Hove); 2019 Nov; 72(11):2584-2596. PubMed ID: 31038000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in Working Memory Capacity Affect Online Spoken Word Recognition: Evidence From Eye Movements.
    Nitsan G; Wingfield A; Lavie L; Ben-David BM
    Trends Hear; 2019; 23():2331216519839624. PubMed ID: 31010398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Some considerations in evaluating spoken word recognition by normal-hearing, noise-masked normal-hearing, and cochlear implant listeners. I: The effects of response format.
    Sommers MS; Kirk KI; Pisoni DB
    Ear Hear; 1997 Apr; 18(2):89-99. PubMed ID: 9099558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users.
    Jaekel BN; Newman RS; Goupell MJ
    J Speech Lang Hear Res; 2017 May; 60(5):1398-1416. PubMed ID: 28395319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Re-reconsidering the role of temporal order in spoken word recognition.
    Gregg J; Inhoff AW; Connine CM
    Q J Exp Psychol (Hove); 2019 Nov; 72(11):2574-2583. PubMed ID: 31030621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Acoustics of Word-Initial Fricatives and Their Effect on Word-Level Intelligibility in Children With Bilateral Cochlear Implants.
    Reidy PF; Kristensen K; Winn MB; Litovsky RY; Edwards JR
    Ear Hear; 2017; 38(1):42-56. PubMed ID: 27556521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.