These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
621 related articles for article (PubMed ID: 24041423)
1. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Zhao Y; Wong HM; Wang W; Li P; Xu Z; Chong EY; Yan CH; Yeung KW; Chu PK Biomaterials; 2013 Dec; 34(37):9264-77. PubMed ID: 24041423 [TBL] [Abstract][Full Text] [Related]
2. Effects of different sulfonation times and post-treatment methods on the characterization and cytocompatibility of sulfonated PEEK. Ma R; Wang J; Li C; Ma K; Wei J; Yang P; Guo D; Wang K; Wang W J Biomater Appl; 2020 Sep; 35(3):342-352. PubMed ID: 32772686 [TBL] [Abstract][Full Text] [Related]
3. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Wang L; He S; Wu X; Liang S; Mu Z; Wei J; Deng F; Deng Y; Wei S Biomaterials; 2014 Aug; 35(25):6758-75. PubMed ID: 24835045 [TBL] [Abstract][Full Text] [Related]
4. Surface bioactivation of Polyetheretherketone (PEEK) by magnesium chondroitin sulfate (MgCS) as orthopedic implants for reconstruction of skeletal defects. Xu L; Li M; Ma F; Zhang H; Liang X; Cheng G; Li Y; Ruiz-Ortega LI; Sun D; Tang B; Qin C Int J Biol Macromol; 2024 Aug; 274(Pt 2):133435. PubMed ID: 38936580 [TBL] [Abstract][Full Text] [Related]
5. Surface phosphonation enhances hydroxyapatite coating adhesion on polyetheretherketone and its osseointegration potential. Mahjoubi H; Buck E; Manimunda P; Farivar R; Chromik R; Murshed M; Cerruti M Acta Biomater; 2017 Jan; 47():149-158. PubMed ID: 27717913 [TBL] [Abstract][Full Text] [Related]
6. Surface sulfonation and nitrification enhance the biological activity and osteogenesis of polyetheretherketone by forming an irregular nano-porous monolayer. Li Y; Wang J; He D; GuoxiongZhu ; Wu G; Chen L J Mater Sci Mater Med; 2019 Dec; 31(1):11. PubMed ID: 31875263 [TBL] [Abstract][Full Text] [Related]
7. Graphene-Oxide-Decorated Microporous Polyetheretherketone with Superior Antibacterial Capability and In Vitro Osteogenesis for Orthopedic Implant. Ouyang L; Deng Y; Yang L; Shi X; Dong T; Tai Y; Yang W; Chen ZG Macromol Biosci; 2018 Jun; 18(6):e1800036. PubMed ID: 29719124 [TBL] [Abstract][Full Text] [Related]
8. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Deng Y; Zhou P; Liu X; Wang L; Xiong X; Tang Z; Wei J; Wei S Colloids Surf B Biointerfaces; 2015 Dec; 136():64-73. PubMed ID: 26363268 [TBL] [Abstract][Full Text] [Related]
9. Enhanced antibacterial property and osteo-differentiation activity on plasma treated porous polyetheretherketone with hierarchical micro/nano-topography. Wang S; Deng Y; Yang L; Shi X; Yang W; Chen ZG J Biomater Sci Polym Ed; 2018 Apr; 29(5):520-542. PubMed ID: 29308716 [TBL] [Abstract][Full Text] [Related]
10. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533 [TBL] [Abstract][Full Text] [Related]
11. Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone. Lu T; Liu X; Qian S; Cao H; Qiao Y; Mei Y; Chu PK; Ding C Biomaterials; 2014 Jul; 35(22):5731-40. PubMed ID: 24767786 [TBL] [Abstract][Full Text] [Related]
12. Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid. Zheng Y; Liu L; Xiao L; Zhang Q; Liu Y Colloids Surf B Biointerfaces; 2019 Jan; 173():591-598. PubMed ID: 30352380 [TBL] [Abstract][Full Text] [Related]
13. Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone. Wang H; Xu M; Zhang W; Kwok DT; Jiang J; Wu Z; Chu PK Biomaterials; 2010 Nov; 31(32):8181-7. PubMed ID: 20692699 [TBL] [Abstract][Full Text] [Related]
14. Regulation of surface micro/nano structure and composition of polyetheretherketone and their influence on the behavior of MC3T3-E1 pre-osteoblasts. Cheng Q; Yuan B; Chen X; Yang X; Lin H; Zhu X; Zhang K; Zhang X J Mater Chem B; 2019 Sep; 7(37):5713-5724. PubMed ID: 31482931 [TBL] [Abstract][Full Text] [Related]
15. Comparison of osteointegration property between PEKK and PEEK: Effects of surface structure and chemistry. Yuan B; Cheng Q; Zhao R; Zhu X; Yang X; Yang X; Zhang K; Song Y; Zhang X Biomaterials; 2018 Jul; 170():116-126. PubMed ID: 29660634 [TBL] [Abstract][Full Text] [Related]
16. Osseointegration of nanohydroxyapatite- or nano-calcium silicate-incorporated polyetheretherketone bioactive composites in vivo. Ma R; Yu Z; Tang S; Pan Y; Wei J; Tang T Int J Nanomedicine; 2016; 11():6023-6033. PubMed ID: 27881916 [TBL] [Abstract][Full Text] [Related]
18. Plasma Surface Functionalized Polyetheretherketone for Enhanced Osseo-Integration at Bone-Implant Interface. Zhao Y; Wong HM; Lui SC; Chong EY; Wu G; Zhao X; Wang C; Pan H; Cheung KM; Wu S; Chu PK; Yeung KW ACS Appl Mater Interfaces; 2016 Feb; 8(6):3901-11. PubMed ID: 26796319 [TBL] [Abstract][Full Text] [Related]
19. Facile Surface Modification Method for Synergistically Enhancing the Biocompatibility and Bioactivity of Poly(ether ether ketone) That Induced Osteodifferentiation. Zhu Y; Cao Z; Peng Y; Hu L; Guney T; Tang B ACS Appl Mater Interfaces; 2019 Aug; 11(31):27503-27511. PubMed ID: 31291088 [TBL] [Abstract][Full Text] [Related]
20. Rapid construction of polyetheretherketone (PEEK) biological implants incorporated with brushite (CaHPO Xue Z; Wang Z; Sun A; Huang J; Wu W; Chen M; Hao X; Huang Z; Lin X; Weng S Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110782. PubMed ID: 32279744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]