BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24041508)

  • 21. Real space observation of silica monoliths in the formation process.
    Saito H; Kanamori K; Nakanishi K; Hirao K
    J Sep Sci; 2007 Nov; 30(17):2881-7. PubMed ID: 17960851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns.
    Reising AE; Godinho JM; Jorgenson JW; Tallarek U
    J Chromatogr A; 2017 Jun; 1504():71-82. PubMed ID: 28511930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns.
    Gritti F; Guiochon G
    J Chromatogr A; 2012 May; 1238():77-90. PubMed ID: 22503619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography.
    Abia JA; Mriziq KS; Guiochon GA
    J Chromatogr A; 2009 Apr; 1216(15):3185-91. PubMed ID: 19268295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Confocal laser scanning microscopy method for quantitative characterization of silica monolith morphology.
    Bruns S; Müllner T; Kollmann M; Schachtner J; Höltzel A; Tallarek U
    Anal Chem; 2010 Aug; 82(15):6569-75. PubMed ID: 20593848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains.
    Hara T; Kobayashi H; Ikegami T; Nakanishi K; Tanaka N
    Anal Chem; 2006 Nov; 78(22):7632-42. PubMed ID: 17105153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of sub-micron skeletal monoliths with high capacity for liquid chromatography.
    Yao C; Qi L; Yang G; Wang F
    J Sep Sci; 2010 Mar; 33(4-5):475-83. PubMed ID: 20063358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of polyethylene glycol on pore structure and separation efficiency of silica-based monolithic capillary columns.
    Hara T; Desmet G; Baron GV; Minakuchi H; Eeltink S
    J Chromatogr A; 2016 Apr; 1442():42-52. PubMed ID: 26976349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6mm I.D. monolithic columns.
    Gritti F; Guiochon G
    J Chromatogr A; 2011 Aug; 1218(31):5216-27. PubMed ID: 21733524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Larger voids in mechanically stable, loose packings of 1.3μm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency.
    Reising AE; Godinho JM; Hormann K; Jorgenson JW; Tallarek U
    J Chromatogr A; 2016 Mar; 1436():118-32. PubMed ID: 26858113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.
    Bakry R; Stöggl WM; Hochleitner EO; Stecher G; Huck CW; Bonn GK
    J Chromatogr A; 2006 Nov; 1132(1-2):183-9. PubMed ID: 16920130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of penetrable macroporous silica spheres for high-performance liquid chromatography.
    Wei JX; Shi ZG; Chen F; Feng YQ; Guo QZ
    J Chromatogr A; 2009 Oct; 1216(44):7388-93. PubMed ID: 19442982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of the eddy dispersion term in chromatographic columns: III. Application to new prototypes of 4.6 mm I.D. monolithic columns.
    Gritti F; Guiochon G
    J Chromatogr A; 2012 Feb; 1225():79-90. PubMed ID: 22265349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ground, sieved, and C18 modified monolithic silica particles for packing material of microcolumn high-performance liquid chromatography.
    Ko JH; Baik YS; Park ST; Cheong WJ
    J Chromatogr A; 2007 Mar; 1144(2):269-74. PubMed ID: 17289065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comments on "hydrodynamic and dispersion behavior in a non-porous silica monolith through fluid dynamic study of a computational mimic reconstructed from sub-micro-tomographic scans".
    Hlushkou D; Höltzel A; Tallarek U
    J Chromatogr A; 2013 Aug; 1302():205-7. PubMed ID: 23806353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-performance computing of flow and transport in physically reconstructed silica monoliths.
    Hlushkou D; Bruns S; Tallarek U
    J Chromatogr A; 2010 Jun; 1217(23):3674-82. PubMed ID: 20434161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of propyl-functionalized hybrid monolithic silica capillaries and evaluation of their performances in nano-LC and CEC.
    Roux R; Puy G; Demesmay C; Rocca JL
    J Sep Sci; 2007 Nov; 30(17):3035-42. PubMed ID: 18027896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical reconstruction of packed beds and their morphological analysis: core-shell packings as an example.
    Bruns S; Tallarek U
    J Chromatogr A; 2011 Apr; 1218(14):1849-60. PubMed ID: 21371714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of chromatographic performances of in-situ synthesized hybrid C8 silica monoliths by reduction of structural radial heterogeneities.
    Roux R; Abi Jaoudé M; Demesmay C
    J Chromatogr A; 2009 May; 1216(18):3857-63. PubMed ID: 19298966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.