These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24041546)

  • 21. A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage.
    Chen C; Gao C; Zhuang L; Li X; Wu P; Dong J; Lu J
    Langmuir; 2010 Jun; 26(12):9533-8. PubMed ID: 20225880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscosity of supercooled aqueous glycerol solutions, validity of the Stokes-Einstein relationship, and implications for cryopreservation.
    Trejo González JA; Longinotti MP; Corti HR
    Cryobiology; 2012 Oct; 65(2):159-62. PubMed ID: 22609516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force.
    Han A; Mondin G; Hegelbach NG; de Rooij NF; Staufer U
    J Colloid Interface Sci; 2006 Jan; 293(1):151-7. PubMed ID: 16023663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of dynamic contact angle on liquid withdrawal from capillary tubes: (semi)-analytical solutions.
    Hilpert M
    J Colloid Interface Sci; 2010 Jul; 347(2):315-23. PubMed ID: 20400087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of capillary isoelectric focusing in glycerol-water media with a view to hydrophobic protein applications.
    Busnel JM; Varenne A; Descroix S; Peltre G; Gohon Y; Gareil P
    Electrophoresis; 2005 Sep; 26(17):3369-79. PubMed ID: 16143969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Tension and Dynamic Contact Angle of Water in Thin Quartz Capillaries.
    Sobolev VD; Churaev NV; Velarde MG; Zorin ZM
    J Colloid Interface Sci; 2000 Feb; 222(1):51-54. PubMed ID: 10655124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An analytic solution of capillary rise restrained by gravity.
    Fries N; Dreyer M
    J Colloid Interface Sci; 2008 Apr; 320(1):259-63. PubMed ID: 18255086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental evidence of the role of viscosity in the molecular kinetic theory of dynamic wetting.
    Duvivier D; Seveno D; Rioboo R; Blake TD; De Coninck J
    Langmuir; 2011 Nov; 27(21):13015-21. PubMed ID: 21919445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels.
    Karna NK; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2016 Nov; 18(47):31997-32001. PubMed ID: 27858022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applicability of Washburn capillary rise for determining contact angles of powders/porous materials.
    Kirdponpattara S; Phisalaphong M; Newby BM
    J Colloid Interface Sci; 2013 May; 397():169-76. PubMed ID: 23484765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of dynamic contact angle on liquid infiltration into horizontal capillary tubes: (semi)-analytical solutions.
    Hilpert M
    J Colloid Interface Sci; 2009 Sep; 337(1):131-7. PubMed ID: 19423129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influences of polarity and hydration cycles on imbibition hysteresis in silica nanochannels.
    Kelly S; Torres-Verdín C; Balhoff MT
    Phys Chem Chem Phys; 2017 Dec; 20(1):456-466. PubMed ID: 29211072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisiting the glass transition temperature of water-glycerol mixtures in the bulk and confined in mesoporous silica.
    Angarita I; Mazzobre MF; Corti HR; Longinotti MP
    Phys Chem Chem Phys; 2021 Aug; 23(31):17018-17025. PubMed ID: 34341810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of contact angle hysteresis on the measurement of capillary forces.
    De Souza EJ; Gao L; McCarthy TJ; Arzt E; Crosby AJ
    Langmuir; 2008 Feb; 24(4):1391-6. PubMed ID: 17949122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic Effects during the Capillary Rise of Fluids in Cylindrical Tubes.
    Lunowa SB; Mascini A; Bringedal C; Bultreys T; Cnudde V; Pop IS
    Langmuir; 2022 Feb; 38(5):1680-1688. PubMed ID: 35077183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation.
    Dimitrov DI; Milchev A; Binder K
    Phys Rev Lett; 2007 Aug; 99(5):054501. PubMed ID: 17930760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast Electrically Driven Capillary Rise Using Overdrive Voltage.
    Hong SJ; Hong J; Seo HW; Lee SJ; Chung SK
    Langmuir; 2015 Dec; 31(51):13718-24. PubMed ID: 26641954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulation of the spontaneous penetration of liquids into cylindrical capillaries.
    Fick AD; Borhan A
    Ann N Y Acad Sci; 2006 Sep; 1077():426-42. PubMed ID: 17124139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capillary Penetration into Inclined Circular Glass Tubes.
    Trabi CL; Ouali FF; McHale G; Javed H; Morris RH; Newton MI
    Langmuir; 2016 Feb; 32(5):1289-98. PubMed ID: 26738739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wettability of a glass surface in the presence of two nonionic surfactant mixtures.
    Szymczyk K; Jańczuk B
    Langmuir; 2008 Aug; 24(15):7755-60. PubMed ID: 18572957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.