These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 24041645)

  • 21. FTIR and Raman Spectroscopy of Rhodopsins.
    Kandori H; Mizutani Y
    Methods Mol Biol; 2022; 2501():207-228. PubMed ID: 35857230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin.
    Furutani Y; Sudo Y; Wada A; Ito M; Shimono K; Kamo N; Kandori H
    Biochemistry; 2006 Oct; 45(39):11836-43. PubMed ID: 17002284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative FTIR study of a new fungal rhodopsin.
    Ito H; Sumii M; Kawanabe A; Fan Y; Furutani Y; Brown LS; Kandori H
    J Phys Chem B; 2012 Oct; 116(39):11881-9. PubMed ID: 22973982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectroscopic evidence for the formation of an N intermediate during the photocycle of sensory rhodopsin II (phoborhodopsin) from Natronobacterium pharaonis.
    Tateishi Y; Abe T; Tamogami J; Nakao Y; Kikukawa T; Kamo N; Unno M
    Biochemistry; 2011 Mar; 50(12):2135-43. PubMed ID: 21299224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization.
    Hashimoto K; Choi AR; Furutani Y; Jung KH; Kandori H
    Biochemistry; 2010 Apr; 49(15):3343-50. PubMed ID: 20230053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteorhodopsin.
    Bamann C; Bamberg E; Wachtveitl J; Glaubitz C
    Biochim Biophys Acta; 2014 May; 1837(5):614-25. PubMed ID: 24060527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer.
    Moukhametzianov R; Klare JP; Efremov R; Baeken C; Göppner A; Labahn J; Engelhard M; Büldt G; Gordeliy VI
    Nature; 2006 Mar; 440(7080):115-9. PubMed ID: 16452929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial Halorhodopsins: Light-Driven Chloride Pumps.
    Engelhard C; Chizhov I; Siebert F; Engelhard M
    Chem Rev; 2018 Nov; 118(21):10629-10645. PubMed ID: 29882660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y; Shichida Y; Kandori H
    Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Internal water molecules of the proton-pumping halorhodopsin in the presence of azide.
    Muneda N; Shibata M; Demura M; Kandori H
    J Am Chem Soc; 2006 May; 128(19):6294-5. PubMed ID: 16683775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis.
    Engelhard M; Scharf B; Siebert F
    FEBS Lett; 1996 Oct; 395(2-3):195-8. PubMed ID: 8898094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular and evolutionary aspects of microbial sensory rhodopsins.
    Inoue K; Tsukamoto T; Sudo Y
    Biochim Biophys Acta; 2014 May; 1837(5):562-77. PubMed ID: 23732219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants.
    Besaw JE; Ou WL; Morizumi T; Eger BT; Sanchez Vasquez JD; Chu JHY; Harris A; Brown LS; Miller RJD; Ernst OP
    J Biol Chem; 2020 Oct; 295(44):14793-14804. PubMed ID: 32703899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Difference FTIR Spectroscopy of Jumping Spider Rhodopsin-1 at 77 K.
    Hanai S; Nagata T; Katayama K; Inukai S; Koyanagi M; Inoue K; Terakita A; Kandori H
    Biochemistry; 2023 Apr; 62(8):1347-1359. PubMed ID: 37001008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Internal water molecules as mobile polar groups for light-induced proton translocation in bacteriorhodopsin and rhodopsin as studied by difference FTIR spectroscopy.
    Maeda A
    Biochemistry (Mosc); 2001 Nov; 66(11):1256-68. PubMed ID: 11743870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water-containing hydrogen-bonding network in the active center of channelrhodopsin.
    Ito S; Kato HE; Taniguchi R; Iwata T; Nureki O; Kandori H
    J Am Chem Soc; 2014 Mar; 136(9):3475-82. PubMed ID: 24512107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump.
    Furutani Y; Sumii M; Fan Y; Shi L; Waschuk SA; Brown LS; Kandori H
    Biochemistry; 2006 Dec; 45(51):15349-58. PubMed ID: 17176057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteorhodopsin is a light-driven proton pump with variable vectoriality.
    Friedrich T; Geibel S; Kalmbach R; Chizhov I; Ataka K; Heberle J; Engelhard M; Bamberg E
    J Mol Biol; 2002 Aug; 321(5):821-38. PubMed ID: 12206764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.