These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24041679)

  • 1. Highly sensitive diagnosis of 43 monogenic forms of diabetes or obesity through one-step PCR-based enrichment in combination with next-generation sequencing.
    Bonnefond A; Philippe J; Durand E; Muller J; Saeed S; Arslan M; Martínez R; De Graeve F; Dhennin V; Rabearivelo I; Polak M; Cavé H; Castaño L; Vaxillaire M; Mandel JL; Sand O; Froguel P
    Diabetes Care; 2014 Feb; 37(2):460-7. PubMed ID: 24041679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What Is the Best NGS Enrichment Method for the Molecular Diagnosis of Monogenic Diabetes and Obesity?
    Philippe J; Derhourhi M; Durand E; Vaillant E; Dechaume A; Rabearivelo I; Dhennin V; Vaxillaire M; De Graeve F; Sand O; Froguel P; Bonnefond A
    PLoS One; 2015; 10(11):e0143373. PubMed ID: 26599467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach.
    Alkorta-Aranburu G; Carmody D; Cheng YW; Nelakuditi V; Ma L; Dickens JT; Das S; Greeley SAW; Del Gaudio D
    Mol Genet Metab; 2014 Dec; 113(4):315-320. PubMed ID: 25306193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic testing for monogenic diabetes using targeted next-generation sequencing in patients with maturity-onset diabetes of the young.
    Szopa M; Ludwig-Gałęzowska A; Radkowski P; Skupień J; Zapała B; Płatek T; Klupa T; Kieć-Wilk B; Borowiec M; Młynarski W; Wołkow P; Małecki MT
    Pol Arch Med Wewn; 2015; 125(11):845-51. PubMed ID: 26552609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical usefulness of multigene screening with phenotype-driven bioinformatics analysis for the diagnosis of patients with monogenic diabetes or severe insulin resistance.
    Hosoe J; Miya F; Kadowaki H; Fujiwara T; Suzuki K; Kato T; Waki H; Sasako T; Aizu K; Yamamura N; Sasaki F; Kurano M; Hara K; Tanaka M; Ishiura H; Tsuji S; Honda K; Yoshimura J; Morishita S; Matsuzawa F; Aikawa SI; Boroevich KA; Nangaku M; Okada Y; Tsunoda T; Shojima N; Yamauchi T; Kadowaki T
    Diabetes Res Clin Pract; 2020 Nov; 169():108461. PubMed ID: 32971154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of current status of molecular diagnosis and characterization of monogenic diabetes mellitus: a focus on next-generation sequencing.
    Campbell MR
    Expert Rev Mol Diagn; 2020 Apr; 20(4):413-420. PubMed ID: 32050823
    [No Abstract]   [Full Text] [Related]  

  • 7. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals.
    Bansal V; Gassenhuber J; Phillips T; Oliveira G; Harbaugh R; Villarasa N; Topol EJ; Seufferlein T; Boehm BO
    BMC Med; 2017 Dec; 15(1):213. PubMed ID: 29207974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive mutation analysis for congenital muscular dystrophy: a clinical PCR-based enrichment and next-generation sequencing panel.
    Valencia CA; Ankala A; Rhodenizer D; Bhide S; Littlejohn MR; Keong LM; Rutkowski A; Sparks S; Bonnemann C; Hegde M
    PLoS One; 2013; 8(1):e53083. PubMed ID: 23326386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible, scalable, and efficient targeted resequencing on a benchtop sequencer for variant detection in clinical practice.
    De Leeneer K; Hellemans J; Steyaert W; Lefever S; Vereecke I; Debals E; Crombez B; Baetens M; Van Heetvelde M; Coppieters F; Vandesompele J; De Jaegher A; De Baere E; Coucke P; Claes K
    Hum Mutat; 2015 Mar; 36(3):379-87. PubMed ID: 25504618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependable and efficient clinical utility of target capture-based deep sequencing in molecular diagnosis of retinitis pigmentosa.
    Wang J; Zhang VW; Feng Y; Tian X; Li FY; Truong C; Wang G; Chiang PW; Lewis RA; Wong LJ
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(10):6213-23. PubMed ID: 25097241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of the next-generation sequencing approach for molecular diagnosis of hereditary hearing loss.
    Sivakumaran TA; Husami A; Kissell D; Zhang W; Keddache M; Black AP; Tinkle BT; Greinwald JH; Zhang K
    Otolaryngol Head Neck Surg; 2013 Jun; 148(6):1007-16. PubMed ID: 23525850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next-generation sequencing using microfluidic PCR enrichment for molecular autopsy.
    Raju H; Ware JS; Skinner JR; Hedley PL; Arno G; Love DR; van der Werf C; Tfelt-Hansen J; Winkel BG; Cohen MC; Li X; John S; Sharma S; Jeffery S; Wilde AAM; Christiansen M; Sheppard MN; Behr ER
    BMC Cardiovasc Disord; 2019 Jul; 19(1):174. PubMed ID: 31337358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular diagnosis of inherited peripheral neuropathies by targeted next-generation sequencing: molecular spectrum delineation.
    Bacquet J; Stojkovic T; Boyer A; Martini N; Audic F; Chabrol B; Salort-Campana E; Delmont E; Desvignes JP; Verschueren A; Attarian S; Chaussenot A; Delague V; Levy N; Bonello-Palot N
    BMJ Open; 2018 Oct; 8(10):e021632. PubMed ID: 30373780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular diagnosis in patients with monogenic diabetes mellitus, and detection of a novel candidate gene.
    Goksen D; Evin F; Isik E; Ozen S; Atik T; Ozkinay F; Akcan N; Ozkan B; Buyukinan M; Nuri Ozbek M; Darcan S; Onay H
    Diabetes Res Clin Pract; 2023 Nov; 205():110953. PubMed ID: 37838154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance comparison of bench-top next generation sequencers using microdroplet PCR-based enrichment for targeted sequencing in patients with autism spectrum disorder.
    Koshimizu E; Miyatake S; Okamoto N; Nakashima M; Tsurusaki Y; Miyake N; Saitsu H; Matsumoto N
    PLoS One; 2013; 8(9):e74167. PubMed ID: 24066114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform.
    De Keulenaer S; Hellemans J; Lefever S; Renard JP; De Schrijver J; Van de Voorde H; Tabatabaiefar MA; Van Nieuwerburgh F; Flamez D; Pattyn F; Scharlaken B; Deforce D; Bekaert S; Van Criekinge W; Vandesompele J; Van Camp G; Coucke P
    BMC Med Genomics; 2012 May; 5():17. PubMed ID: 22607986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of target enrichment platforms using massively parallel sequencing for the mutation detection for congenital muscular dystrophy.
    Valencia CA; Rhodenizer D; Bhide S; Chin E; Littlejohn MR; Keong LM; Rutkowski A; Bonnemann C; Hegde M
    J Mol Diagn; 2012; 14(3):233-46. PubMed ID: 22426012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular diagnosis of autosomal dominant polycystic kidney disease using next-generation sequencing.
    Tan AY; Michaeel A; Liu G; Elemento O; Blumenfeld J; Donahue S; Parker T; Levine D; Rennert H
    J Mol Diagn; 2014 Mar; 16(2):216-28. PubMed ID: 24374109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineation of the genetic and clinical spectrum, including candidate genes, of monogenic diabetes: a multicenter study in South Korea.
    Cheon CK; Lee YJ; Yoo S; Lee JH; Lee JE; Kim HJ; Choi IJ; Choi Y; Lee S; Yoon JY
    J Pediatr Endocrinol Metab; 2020 Dec; 33(12):1539-1550. PubMed ID: 33031055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive molecular diagnosis of Epstein-Barr virus-associated lymphoproliferative diseases using next-generation sequencing.
    Ono S; Nakayama M; Kanegane H; Hoshino A; Shimodera S; Shibata H; Fujino H; Fujino T; Yunomae Y; Okano T; Yamashita M; Yasumi T; Izawa K; Takagi M; Imai K; Zhang K; Marsh R; Picard C; Latour S; Ohara O; Morio T
    Int J Hematol; 2018 Sep; 108(3):319-328. PubMed ID: 29777376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.