These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24041903)

  • 1. Identification of novel genes responsible for overexpression of ampC in Pseudomonas aeruginosa PAO1.
    Tsutsumi Y; Tomita H; Tanimoto K
    Antimicrob Agents Chemother; 2013 Dec; 57(12):5987-93. PubMed ID: 24041903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins.
    Berrazeg M; Jeannot K; Ntsogo Enguéné VY; Broutin I; Loeffert S; Fournier D; Plésiat P
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6248-55. PubMed ID: 26248364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AmpG inactivation restores susceptibility of pan-beta-lactam-resistant Pseudomonas aeruginosa clinical strains.
    Zamorano L; Reeve TM; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A
    Antimicrob Agents Chemother; 2011 May; 55(5):1990-6. PubMed ID: 21357303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients.
    Moya B; Zamorano L; Juan C; Pérez JL; Ge Y; Oliver A
    Antimicrob Agents Chemother; 2010 Mar; 54(3):1213-7. PubMed ID: 20086158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure.
    Ropy A; Cabot G; Sánchez-Diener I; Aguilera C; Moya B; Ayala JA; Oliver A
    Antimicrob Agents Chemother; 2015 Jul; 59(7):3925-34. PubMed ID: 25896695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression.
    Langaee TY; Gagnon L; Huletsky A
    Antimicrob Agents Chemother; 2000 Mar; 44(3):583-9. PubMed ID: 10681322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa.
    Zamorano L; Reeve TM; Deng L; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A
    Antimicrob Agents Chemother; 2010 Sep; 54(9):3557-63. PubMed ID: 20566764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa.
    Rodríguez-Martínez JM; Poirel L; Nordmann P
    Antimicrob Agents Chemother; 2009 May; 53(5):1766-71. PubMed ID: 19258272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model system to evaluate the effect of ampD mutations on AmpC-mediated beta-lactam resistance.
    Schmidtke AJ; Hanson ND
    Antimicrob Agents Chemother; 2006 Jun; 50(6):2030-7. PubMed ID: 16723562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Drug Resistance Determinants in a Clinical Isolate of Pseudomonas aeruginosa by High-Density Transposon Mutagenesis.
    Sonnabend MS; Klein K; Beier S; Angelov A; Kluj R; Mayer C; Groß C; Hofmeister K; Beuttner A; Willmann M; Peter S; Oberhettinger P; Schmidt A; Autenrieth IB; Schütz M; Bohn E
    Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31818817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.
    Cavallari JF; Lamers RP; Scheurwater EM; Matos AL; Burrows LL
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3078-84. PubMed ID: 23612194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering β-lactamase-independent β-lactam resistance evolution trajectories in Pseudomonas aeruginosa.
    Cabot G; Florit-Mendoza L; Sánchez-Diener I; Zamorano L; Oliver A
    J Antimicrob Chemother; 2018 Dec; 73(12):3322-3331. PubMed ID: 30189050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD.
    Bagge N; Ciofu O; Hentzer M; Campbell JI; Givskov M; Høiby N
    Antimicrob Agents Chemother; 2002 Nov; 46(11):3406-11. PubMed ID: 12384343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay.
    Okamoto K; Gotoh N; Nishino T
    Antimicrob Agents Chemother; 2001 Jul; 45(7):1964-71. PubMed ID: 11408209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex.
    Guérin F; Isnard C; Cattoir V; Giard JC
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7753-61. PubMed ID: 26438498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential selection of single-step AmpC or efflux mutants of Pseudomonas aeruginosa by using cefepime, ceftazidime, or ceftobiprole.
    Queenan AM; Shang W; Bush K; Flamm RK
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4092-7. PubMed ID: 20606064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of Pseudomonas-Derived Cephalosporinase and Metallo-β-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Korea.
    Cho HH; Kwon GC; Kim S; Koo SH
    J Microbiol Biotechnol; 2015 Jul; 25(7):1154-62. PubMed ID: 25907063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased expression of ampC in Pseudomonas aeruginosa mutants selected with ciprofloxacin.
    Wolter DJ; Schmidtke AJ; Hanson ND; Lister PD
    Antimicrob Agents Chemother; 2007 Aug; 51(8):2997-3000. PubMed ID: 17517839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR.
    Caille O; Zincke D; Merighi M; Balasubramanian D; Kumari H; Kong KF; Silva-Herzog E; Narasimhan G; Schneper L; Lory S; Mathee K
    J Bacteriol; 2014 Nov; 196(22):3890-902. PubMed ID: 25182487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiation of beta-lactams against Pseudomonas aeruginosa strains by Ro 48-1256, a bridged monobactam inhibitor of AmpC beta-lactamases.
    Livermore DM; Chen HY
    J Antimicrob Chemother; 1997 Sep; 40(3):335-43. PubMed ID: 9338484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.